## AGL13170\_01

**REPORT ON THE** 

**GEOPHYSICAL SURVEY** 

AT

**RANHEIM VESTRE** 

FOR

MULTICONSULT

27<sup>TH</sup> FEBRUARY 2014



APEX Geoservices Limited Unit 6 Knockmullen Business Pk., Gorey, Co. Wexford, Ireland

T: 0402 21842 F: 0402 21843 E: info@apexgeoservices.ie W: www.apexgeoservices.com

# PRIVATE AND CONFIDENTIAL

THE FINDINGS OF THIS REPORT ARE THE RESULT OF A GEOPHYSICAL SURVEY USING NON-INVASIVE SURVEY TECHNIQUES CARRIED OUT AT THE GROUND SURFACE. INTERPRETATIONS CONTAINED IN THIS REPORT ARE DERIVED FROM A KNOWLEDGE OF THE GROUND CONDITIONS, THE GEOPHYSICAL RESPONSES OF GROUND MATERIALS AND THE EXPERIENCE OF THE AUTHOR. APEX GEOSERVICES LTD. HAS PREPARED THIS REPORT IN LINE WITH BEST CURRENT PRACTICE AND WITH ALL REASONABLE SKILL, CARE AND DILIGENCE IN CONSIDERATION OF THE LIMITS IMPOSED BY THE SURVEY TECHNIQUES USED AND THE RESOURCES DEVOTED TO IT BY AGREEMENT WITH THE CLIENT. THE INTERPRETATIVE BASIS OF THE CONCLUSIONS CONTAINED IN THIS REPORT SHOULD BE TAKEN INTO ACCOUNT IN ANY FUTURE USE OF THIS REPORT.

| PROJECT NUMBER                                                     | AGL13170                                                              |                  |                                |
|--------------------------------------------------------------------|-----------------------------------------------------------------------|------------------|--------------------------------|
| Author                                                             | CHECKED                                                               | REPORT<br>STATUS | Date                           |
| EurGeol Shane O'Rourke<br>P.Geo., M.Sc (geophysics),<br>H.Dip. GIS | EurGeol Peter O'Connor<br>P.Geo., M.Sc (geophysics),<br>Dip. EIA Mgt. | V.01             | 27 <sup>th</sup> February 2014 |

## **CONTENTS**

| 1.                                                                                                         | EXECUTIVE SUMMARY                                                                                                                | . 1                                           |
|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| 2.                                                                                                         | INTRODUCTION                                                                                                                     | 2                                             |
| 2.1                                                                                                        | Survey Objectives                                                                                                                | 2                                             |
| 2.2                                                                                                        | Site Background                                                                                                                  | 2                                             |
| 2.2.1                                                                                                      | Geology                                                                                                                          | .3                                            |
| 2.2.2                                                                                                      | Soils                                                                                                                            | .4                                            |
| 2.2.3                                                                                                      | Site Investigation                                                                                                               | .5                                            |
| 2.3                                                                                                        | Survey Rationale                                                                                                                 | 6                                             |
| 3.                                                                                                         | RESULTS & INTERPRETATION                                                                                                         | . 7                                           |
| 3.1                                                                                                        | Resistivity Profiling                                                                                                            | . 7                                           |
| 3.2                                                                                                        | Seismic Refraction Profiling                                                                                                     | . 7                                           |
| 3.3                                                                                                        | MASW Profiling                                                                                                                   | . 7                                           |
| 3.4                                                                                                        | Discussion                                                                                                                       | 11                                            |
| 3.4.1                                                                                                      | Overburden                                                                                                                       | 12                                            |
| 3.4.2                                                                                                      | Sensitive Clay                                                                                                                   | 12                                            |
| 3.4.3                                                                                                      | Bedrock                                                                                                                          | 13                                            |
| 4.                                                                                                         | RECOMMENDATIONS                                                                                                                  | 14                                            |
| 5.                                                                                                         | REFERENCES                                                                                                                       | 15                                            |
| 6.                                                                                                         | APPENDIX A: DETAILED METHODOLOGY                                                                                                 | 16                                            |
| 6.1                                                                                                        | Electrical Resistivity Tomography (ERT)                                                                                          | 16                                            |
| 6.1.1                                                                                                      | Principles                                                                                                                       | 16                                            |
| 6.1.2                                                                                                      | Data Collection                                                                                                                  | 16                                            |
| 6.1.3                                                                                                      | Data Processing                                                                                                                  | 16                                            |
| 6.1.4                                                                                                      | Relocation                                                                                                                       | 16                                            |
| 6.2                                                                                                        | Seismic Refraction Profiling                                                                                                     | 17                                            |
| 6.2.1                                                                                                      | Principles                                                                                                                       | 17                                            |
| 6.2.2                                                                                                      | Data Collection                                                                                                                  | 17                                            |
| 6.2.3                                                                                                      | Data Processing                                                                                                                  | 17                                            |
| 6.2.4                                                                                                      | Relocation                                                                                                                       |                                               |
| 6.2                                                                                                        |                                                                                                                                  | 1/                                            |
| 0.5                                                                                                        | MASW                                                                                                                             | 17<br>17                                      |
| 6.3.1                                                                                                      | MASW                                                                                                                             | 17<br>17<br>17                                |
| 6.3.1<br>6.3.2                                                                                             | MASW<br>Principles<br>Data Collection                                                                                            | 17<br>17<br>17<br>18                          |
| 6.3.1<br>6.3.2<br>6.3.3                                                                                    | MASW<br>Principles<br>Data Collection<br>Data Processing                                                                         | 17<br>17<br>17<br>18<br>18                    |
| <ul><li>6.3.1</li><li>6.3.2</li><li>6.3.3</li><li>6.3.4</li></ul>                                          | MASW<br>Principles<br>Data Collection<br>Data Processing<br>Relocation                                                           | 17<br>17<br>17<br>18<br>18<br>19              |
| 6.3.1<br>6.3.2<br>6.3.3<br>6.3.4<br><b>7.</b>                                                              | MASW<br>Principles<br>Data Collection<br>Data Processing<br>Relocation<br>APPENDIX B: MASW RESULTS                               | 17<br>17<br>17<br>18<br>18<br>19<br><b>20</b> |
| 6.3.1<br>6.3.2<br>6.3.3<br>6.3.4<br>7.<br>8.                                                               | MASW<br>Principles<br>Data Collection<br>Data Processing<br>Relocation<br>APPENDIX B: MASW RESULTS<br>APPENDIX C: DYNAMIC MODULI | 17<br>17<br>18<br>18<br>19<br>20<br>39        |
| <ul> <li>6.3.1</li> <li>6.3.2</li> <li>6.3.3</li> <li>6.3.4</li> <li>7.</li> <li>8.</li> <li>9.</li> </ul> | MASW                                                                                                                             | 17<br>17<br>18<br>18<br>19<br>20<br>39<br>58  |



## 1. EXECUTIVE SUMMARY

APEX Geoservices Limited was requested by Multiconsult Trondheim to carry out a geophysical survey prior to the construction of a new residential development in Ranheim, east of Trondheim.

The site is immediately north of the E6 motorway, and comprises mainly sloping crop fields which are north and south of a central area of houses, farm buildings and stables. These buildings are part of the survey area, although the western part of these buildings is designated as not for development.

The objectives of the survey were to map the thickness and variation of the soil layers, to identify the thickness and extent of the quick clay layer, to provide soil stiffness information ( $G_{max}$ ) and to indicate the depth to bedrock.

The survey comprises ERT (Electrical Resistivity Tomography), Seismic Refraction Profiling and MASW (Multichannel Analysis of Surface Waves)

The results indicate that overburden ranges in thickness from 0.5-24.5m, with the zones of thickest overburden along the southern and eastern flanks of the site. Overburden is interpreted to comprise mainly sandy clay, with some clayey sand/sand mainly in the south of the site.

Sensitive clay is interpreted to be present in a zone in the east of the site (c.13m thick), with two further possible zones in the north-east of the site (c.6.5-9.5m). Zones of unleached marine clay have not been interpreted to be present on site.

The seismic refraction/MASW results indicate that overburden material is overall softvery stiff/loose-very dense and diggable. The MASW results show that zones of soft/loose material are frequently present across the site.

Bedrock is interpreted as highly-moderately weathered greenschist which is c.3-5m thick, followed by slightly weathered-fresh greenschist. Interpreted bedrock elevation ranges from 10-47 mOD across the site, with the lowest bedrock elevations along the western and southern flanks of the site.

The site investigation results correlate well with the geophysical results.



## 2. INTRODUCTION

APEX Geoservices Limited was requested by Multiconsult Trondheim to carry out a geophysical survey prior to the construction of a new development at Ranheim Vestre, Trondheim.

#### 2.1 Survey Objectives

The objectives of the survey were to:

- 1. Map the thickness and variation of the soil layers.
- 2. Identify the thickness and extent of the quick clay layer.
- 3. Provide soil stiffness information (G<sub>max</sub>).
- 4. Provide information on the depth to bedrock.

#### 2.2 Site Background

The site is located in Ranheim, which is approx. 4km to the east of Trondheim. The site is immediately north of the E6 motorway, and comprised mainly sloping crop fields which are north and south of a central area of houses, farm buildings and stables. These buildings are part of the survey area, although the western part of these buildings is designated as not for development.



Figure 2.1 Site Location





Figure 2.2 View of the site facing north.

The crop field to the north includes two elevated areas of levelled spoil, which is from the construction of a set of prefabricated service buildings in the north-west of the northern field. A road runs through the site from west to east.

## 2.2.1 Geology

The Geological Survey of Norway Geology Bedrock Map (Fig.2.3) indicates that the centre and west of the site area is mainly underlain by greenstone (meta-basalt) and undifferentiated green slate, with deformed pillow lavas. The east of the site comprises grey to green greywacke with layers of siltstone and phyllite.





Figure 2.3: Geological map of the Ranheim area , showing the boundary between bedrock types in the east of the site (see description above). From <u>http://www.ngu.no/en-gb/hm/Maps-and-data/</u>

## 2.2.2 Soils

The Geological Survey of Norway Geology Superficial Deposits map for the survey area describes the northern four-fifths of the site as comprising beach deposits, with thick marine sediment in the south (Fig.2.4).





Figure 2.4: Superficial deposits for the Ranheim area (see description above). From <u>http://www.ngu.no/en-qb/hm/Maps-and-data/</u>

## 2.2.3 Site Investigation

A series of percussion soundings had been carried out throughout the site prior to the geophysical survey which ceased at 3.5-12.5m bgl. These results correlated well with the geophysical findings.

A further series of percussion soundings were then carried out after the geophysical survey and these were interpreted to cease at bedrock from 5.5-16.3m bgl for soundings E4, F3, G3 and I1. Soundings A2, B2A, C3, D5, E3 and E5 penetrated to 3.4-24.5 m bgl.

A series of borings to recover bedrock were also acquired, and these encountered bedrock at 1.4-13.6m bgl.

Sampling of the site investigation data recorded mainly clay in the northern part of the site, with clay and sand in the southern part of the site.



Sensitive clay is interpreted at 6.5m and from 7-18m bgl on sounding E5, and at 6.5m on F3.

Vertical resistivity soundings were carried out for B2, E4, E5 and I1, with resistivity ranging from mainly 50-200 ohm-m.

## 2.3 Survey Rationale

Electrical Resistivity Tomography (ERT) soundings will image the resistivity of the materials in the subsurface along a profile to produce a pseudo-section showing the variation in resistivity to a maximum of approx. 55m bgl, depending on the length of the profile. Each pseudo-section will be interpreted to determine the material type along the profile at increasing depth, based on the typical resistivities returned for ground materials. After initial testing on both Wenner and Gradient arrays, it was decided to acquire Wenner arrays for the Ranheim site.

Seismic Refraction Profiling measures the velocity of refracted seismic waves through the overburden and rock material and allows an assessment of the thickness and quality of the materials present to be made. Stiffer and stronger materials usually have higher seismic velocities while soft, loose or fractured materials have lower velocities. Readings are taken using geophones connected via a multi-core cable to a seismograph. This method should allow us to profile the depth to the top of the bedrock, along profiles across the site.

The MASW method is used to estimate shear-wave (S-wave) velocities in the ground material to indicate possible soft zones. Materials with a S-wave velocity of <175 m/s are classified as soft/loose. MASW data was collected in 1D mode simultaneously with the seismic refraction data. MASW data is also a good indicator of bedrock depth.



## 3. RESULTS & INTERPRETATION

## 3.1 Resistivity Profiling

Resistivity Profiles R1-R21 were recorded across the survey area. The resistivity data has been interpreted on the following basis.

| Resistivity<br>(Ohm.m) | Interpretation                        |
|------------------------|---------------------------------------|
| 19 - 50                | SILT / CLAY / possible Sensitive CLAY |
| 50 - 139               | Sandy CLAY                            |
| 139 - 520              | Clayey SAND / SAND                    |
| 139 - 269              | Weathered GREENSCHIST                 |
| 269 - 2000             | GREENSCHIST                           |

## 3.2 Seismic Refraction Profiling

Seismic refraction Profiles S1-S20 were recorded across the survey area. The seismic data has outlined three-four P-wave velocity ( $\underline{Vp}$ ) layers and has been interpreted on the following basis:

| Layer            | Vp Velocity<br>range (m/s) | Average<br>Velocity<br>(m/s) | Estimated<br>Excavatability/<br>Rippability | Interpretation                                  |
|------------------|----------------------------|------------------------------|---------------------------------------------|-------------------------------------------------|
| 1                | 152-513                    | 308                          | Diggable                                    | Soft/Loose Overburden                           |
| 2                | 533-1300                   | 881                          | Diggable                                    | Firm-Stiff/Medium Dense-Dense<br>Overburden     |
| 3                | 1201-2148                  | 1613                         | Diggable                                    | Stiff-Very Stiff/Dense-Very Dense<br>Overburden |
|                  |                            |                              | Rippable-<br>Break/Blast                    | Highly-Moderately Weathered BEDROCK             |
| 4 2107-6051 3883 |                            | 3883                         | Diggable                                    | Very Stiff/Very Dense Overburden                |
|                  |                            |                              | Break/Blast                                 | Slightly Weathered-Fresh BEDROCK                |

Layer 2 has been interpreted as absent for Profiles S5, S9 and S17 and Layer 3 has been interpreted as absent for Profiles S1, S6 and S17.

## 3.3 MASW Profiling

MASW data was acquired in 1D mode. 1D Profiles were acquired at the locations of Profiles S1-S20, along the same profiles as the seismic refraction data. A 1D MASW profile was derived for each of S1-S20, with the exception of Profile S6 (data compromised due to proximity of bedrock to surface).











Fig.3.4 Gmax (MPa), deeper bedrock



AGL13170 Ranheim Vestre Geophysical Report



The 1D MASW Profiles show the variation in shear wave velocity with depth, at the centre of the profile location.

Figures 3.1 and 3.2 show the derived shear-wave velocity for the profiles acquired over shallow bedrock and deeper bedrock respectively. Figures 3.3 and 3.4 show the corresponding derived Gmax values (small strain shear modulus). The individual 1D plots are shown in Appendix C.

#### OVERBURDEN (SOIL)

The shear-wave velocity for material interpreted as overburden ranges from 109-447 m/s (average of 231 m/s) with a corresponding Gmax of 24-400 MPa (average of 115 MPa). These results indicate material which is generally soft–stiff (see table below). Soft material is interpreted as material from 100-175 m/s (Figure 3.5).

| PROFILE | INTERPRETED SOFT | VELOCITY (m/s) |
|---------|------------------|----------------|
|         | ZONE (m bgl)     |                |
| S2      | 2.1-3.6          | 172            |
| S4      | 1.9-3.3          | 128            |
| S8      | 1.5-3.8          | 150-169        |
| S9      | 0.8-2.7          | 113            |
| S10     | 2.8-4.2          | 154            |
| S11     | 1.1-2.4          | 148            |
| S12     | 2.9-4.4          | 175            |
| S13     | 2.6-3.9          | 142            |
| S14     | 1.5-3.9          | 131-170        |
| \$15    | 1.5-2.6          | 109            |
| S16     | 1.0-2.3          | 155            |
| S17     | 0.6-1.4          | 124            |
| S19     | 0.9-2.0          | 151            |



Profile S12 is located upon sounding E5 (which has interpreted sensitive clay from 7-18m bgl.). Profile S12 shows a markedly lower velocity profile than the other 1D profiles, particularly from 2.9-8.6m bgl.

Profile S20 is acquired upon overburden which is interpreted to be c.16m thick. This profile shows markedly higher shear wave velocities for overburden (particularly from >10m bgl), which suggests than the material from >10m bgl comprises very stiff-hard overburden or highly-moderately weathered bedrock.

#### BEDROCK

The shear-wave velocity for material interpreted as bedrock ranges from 311-1522 m/s (average of 648 m/s) with a corresponding Gmax of 242-6255 MPa (average of 1332 MPa). These values are generally low, particularly for the material in the upper 3-6m of bedrock (in comparison to the Irish setting), which indicates a high degree of weathering/fracturing.



Fig.3.5 Shear wave velocity and corresponding soil stiffness.

## 3.4 Discussion

The Resistivity, Seismic Refraction, MASW, and site investigation results have been combined to produce the interpreted section on Drawings 13170\_02 to 13170\_08. The interpreted bedrock elevation and overburden thickness maps are shown in Drawings 13170\_09 and 13170\_10 respectively. Both of these incorporate the site investigation results. A summary map is shown on Drawing 13170\_11.



#### 3.4.1 Overburden

Material with a resistivity of 19-50, 50-139 and 139-520 ohm-m has been interpreted as silt/clay, sandy clay and clayey sand/sand respectively.

The results indicate that sandy clay is the most abundant soil type throughout the site, particularly on the northern side (overburden resistivities are generally lower in the north of the site). Pockets of silt/clay have been interpreted, and these are located in the north and east of the site.

Clayey sand/sand has mainly been interpreted in an area in the south of the site as shown on the summary map (Drawing 13170\_11), comprising the southern parts of Profiles R10 and R14, and R13 and R12. This area comprises a sloped zone of lowest elevation in the southern part of the site. This increase in sandy material generally coincides with the zone depicted as thick marine sediment on the soils map for the area (Fig.2.4).

Overburden thickness has been contoured on Drawing 13170\_10, and is interpreted to range from 0.5-24.5m, with the zones of thickest overburden along the southern and eastern flanks of the site, and in the far north-west.

The seismic refraction/MASW results indicate that overburden material is overall softvery stiff/loose-very dense and diggable, and is generally soft-stiff/loose-dense with the exception of Profile S20 (see above). As detailed above, zones of soft/loose are frequently present within the MASW results.

The vertical resistivity soundings correlate very well with the ERT results with the exception of E4. E4 is carried out upon Profile R4 in the horse paddock, with lower resistivities recorded for R4 (<19 ohm-m) at the location on E4, suggesting interference due to underground services/effluent from animal waste for Profile R4.

Some further zones of very low resistivity (<19 ohm-m) are present within the ERT results, and these are all present for ERT profiles which span the inner buildings/stables. Further examination of the site investigation results, particularly C3, E3, E4, E5 and D5, indicates that the zones of very low resistivity are highly likely to be due to the presence of underground services/effluent from animal waste and are not due to natural ground materials.

Note that anisotrophy (slight variations in resistivity values due to the direction of travel of the electrical signal) may affect some of the ERT Profiles and will lead to slight variations at locations where ERT Profiles intersect.

#### 3.4.2 Sensitive Clay

Sensitive clay is interpreted at 6.5m and from 7-18m bgl on sounding E5, and at 6.5m on F3. For E5, this corresponds with values of approx. 37-50 ohm-m for Profile R2, and a



zone of sensitive clay has therefore been interpreted in the east of the site along Profile R2 (See Drawings 13170\_02 and 13170\_11), for overburden material of 37-50 ohm-m.

Published geotechnical papers indicate that sensitive clay is present within the range 10-100 ohm-m. However, since E5 is the only sounding which has resulted in an appreciable thickness of sensitive clay, and this corresponds with approx. 37-50 ohm-m, then for this site zones of sensitive clay have only been interpreted in areas of 37-50 ohm-m (some zones of 37-50 ohm-m are present on site which are not interpreted as sensitive clay; these are interpreted as mainly thin silt/clay near the surface). Two other areas of possible sensitive clay have therefore been interpreted, in the far north-east of the site (Drawing 13170\_11).

Overall, low resistivities (<19 ohm-m) which would be indicative of unleached marine clay are not present on site (with the exception of profiles in the inner buildings/stables), and therefore this would limit the likelihood of substantial quantities of sensitive clay being present.

As shown in Section 3.3, 1D MASW Profile S12 shows a distinctive low velocity profile at the location of sounding E5. Profile S4, in the far north-west of the site, is the only other profile which gives a similar result. Profile S11 is located in the easternmost area of possible sensitive clay interpreted in the north-east of the site, however this profile shows a higher velocity profile from than S12, which may indicate a lower likelihood of sensitive clay in this area.

## 3.4.3 Bedrock

Bedrock with a resistivity of 139-269 and 269-2000 ohm-m has been interpreted as weathered greenschist and greenschist respectively.

The seismic refraction/MASW results indicate that highly-moderately weathered bedrock will be rippable to requiring breaking/blasting and that slightly weathered-fresh bedrock will require breaking/blasting. Highly-moderately weathered bedrock is generally interpreted as c.3-5m across the site.

The interpreted elevation of the top of the weathered bedrock is presented on Drawing 13170\_09 and the results show that this bedrock elevation ranges from 10-47 mOD, with the lowest bedrock elevations along the western and southern flanks of the site.

Two possible faults have been interpreted to span the site, in the north and south of the site, as shown on Drawing 13170\_11. These are interpreted from zones of near-vertical low resistivity within interpreted bedrock.



## 4. **RECOMMENDATIONS**

The geophysical report should be reviewed after the completion of any further direct investigation.

Suitable mitigation measures for construction in the presence of sensitive clay are recommended for any buildings located along the east of the site.



## 5. **REFERENCES**

<u>Bell F.G., 1993;</u> 'Engineering Geology', Blackwell Scientific Press.

Davies & Schulteiss, 1980;

'Seismic signal processing in Engineering Site Investigation – a case history', Ground Engineering, May 1980.

Hagedoorn, J.G., 1959;

'The plus - minus method of interpreting seismic refraction sections', Geophysical Prospecting, 7, 158 - 182.

KGS, 2010, Surfseis 3.05 Users Manual, Kansas Geological Survey.

<u>Palmer, D., 1980;</u> 'The Generalized Reciprocal Method of seismic refraction interpretation', SEG.

Park, C.B., Miller, R.D., and Xia, J., 1998; Ground roll as a tool to image near-surface anomaly:SEG Expanded Extracts, 68th Annual Meeting, New Orleans, Louisiana, 874-877.

Park, C.B., Miller, R.D., and Xia, J., 1999; Multi-channel analysis of surface waves (MASW): Geophysics, May-June issue.

<u>Redpath, B.B., 1973;</u> 'Seismic refraction exploration for engineering site investigations', NTIS, U.S. Dept. of Commerce

<u>Soske, J.L., 1959;</u> 'The blind zone problem in engineering geophysics', Geophysics, 24, pp 359-365.

Long, M., Donohue, S., L'Heureux J-S., Solberg, I-L., Ronning, J-S., Limacher R., O`Connor, P., Sauvin, G., Romoen M., and Lecomte I, 2012.

Relationship between electrical resistivity and basic geotechnical parameters for marine clays. Canadian Geotechnical Journal.

15

http://www.ngu.no/en-gb/hm/Maps-and-data/



## 6. APPENDIX A: DETAILED METHODOLOGY

## 6.1 Electrical Resistivity Tomography (ERT)

#### 6.1.1 Principles

This surveying technique makes use of the Wenner or Gradient resistivity arrays. The 2D-resistivity profiling method records a large number of resistivity readings in order to map lateral and vertical changes in material types. The 2D-resistivity profiling method involves the use of 1-61 electrodes connected to a resistivity meter, using computer software to control the process of data collection and storage.

## 6.1.2 Data Collection

Profiles R1-R8 were recorded from 14-18<sup>th</sup> October 2013 using an ABEM resistivity meter, imaging software, two-three 20 takeout multicore cables and up to 61 stainless steel electrodes, with a 5m spacing between electrodes. Saline solution was used at the electrode\ground interface in order to gain a good electrical contact required for the technique to work effectively. The recorded data were processed and viewed immediately after the survey.

#### 6.1.3 Data Processing

The field readings were stored in computer files and inverted using the RES2DINV package (ABEM, 2013) with up to 5 iterations of the measured data carried out for each profile to obtain a 2D-Depth model of the resistivities.

The inverted 2D-Resistivity models and corresponding interpreted geology are displayed on the accompanying drawings. Distance is indicated along the horizontal axis of the profiles. Profiles have been contoured using the same contour intervals and colour codes.

#### 6.1.4 Relocation

All data were referenced using a Garmin GPS-60 with c.2m accuracy.



## 6.2 Seismic Refraction Profiling

## 6.2.1 Principles

The seismic refraction profiling method measures the velocity of refracted seismic waves through the overburden and rock material and allows an assessment of the thickness and quality of the materials present to be made. Stiffer and stronger materials usually have higher seismic velocities while soft, loose or fractured materials have lower velocities. Readings are taken using geophones connected via multi-core cable to a seismograph.

#### 6.2.2 Data Collection

Twenty seismic profiles were recorded from 14-18<sup>th</sup> October 2013 using a Geode high-resolution 24 channel digital seismograph with geophone spacings of 1.5-3m. The source of the seismic waves was a sledgehammer.

#### 6.2.3 Data Processing

The recorded data was interpreted using the ray-tracing and intercept time methods, to acquire depths to layer boundaries and the P-wave velocities of these layers, using the FIRSTPIX and GREMIX programs.

GREMIX interprets seismic refraction data as a laterally varying layered earth structure. It incorporates the slope-intercept method, parts of the Plus-Minus Method of Hagedoorn (1959), Time-Delay Method, and features the Generalized Reciprocal Method (GRM) of Palmer (1980). Up to four layers can be mapped, one deduced from direct arrivals and three deduced from refractions. Phantoming of all possible travel time pairs can be carried out by adjusting reciprocal times of off shots.

## 6.2.4 Relocation

All data were referenced using a Garmin GPS-60 with c.2m accuracy.

## 6.3 MASW

#### 6.3.1 Principles

The Multi-channel Analysis of Surface Waves (MASW) (Park et al., 1998, 1999) utilizes Surface waves (Rayleigh waves) to determine the elastic properties of the shallow subsurface. Surface waves carry up to two/thirds of the seismic energy but are usually considered as noise in conventional body wave reflection and refraction seismic surveys.

The penetration depth of surface waves changes with wavelength, i.e. longer wavelengths penetrate deeper. When the elastic properties of near surface materials vary with depth, surface waves then become dispersive, i.e. propagation velocity changes with frequency. The propagation (or phase) velocity is determined by the average elastic property of the medium within the penetration depth. Therefore the dispersive nature of surface waves may be used to investigate changes in elastic properties of the shallow subsurface.



The MASW method employs the multi-channel recording and processing techniques (Sheriff and Geldart, 1982) that have similarities to those used in a seismic reflection survey and which allow better waveform analysis and noise elimination. To produce a shear wave velocity (Vs) profile and a stiffness profile of the subsurface using Surface waves the following basic procedure is followed:

- (i) A point source (eg. a sledgehammer) is used to generate vertical ground motions,
- (ii) The ground motions are measured using low frequency geophones, which are disposed along a straight line directed toward the source,
- (iii) the ground motions are recorded using either a conventional seismograph, oscilloscope or spectrum analyzer,
- (iv) a dispersion curve is produced from a spectral analysis of the data showing the variation of Surface wave velocity with wavelength,
- (v) the dispersion curve in inverted using a modeling and least squares minimization process to produce a subsurface profile of the variation of Surface wave and shear wave velocity with depth,
- (vi) a stiffness-depth profile (shear modulus, G) can be derived from elastic theory.

## 6.3.2 Data Collection

The recording equipment consisted of a Geode 24 channel digital seismograph, 24 no. 10HZ vertical geophones, hammer energy source with mounted trigger and a 24 take-out cable. The data was recorded whilst the seismic refraction profiles S1-S20 were being acquired.

#### 6.3.3 Data Processing

MASW processing was carried out using the SURFSEIS processing package developed by Kansas Geological Survey (KGS, 2010). SURFSEIS is designed to generate a shear wave (Vs) velocity profile.

SURFSEIS data processing involves three steps:

(i) Preparation of the acquired multichannel record. This involves converting the data file into the processing format.

(ii) Production of a dispersion curve from a spectral analysis of the data showing the variation of Raleigh wave phase velocity with wavelength. Confidence in the dispersion curve can be estimated through a measure of signal to noise ratio (S/N) which is obtained from a coherency analysis. Noise includes both body waves and higher mode surface waves. To obtain an accurate dispersion curve the spectral content and phase velocity characteristics are examined through an overtone analysis of the data.

(iii) Inversion of the dispersion curve is then carried out to produce a subsurface profile of the variation of shear wave velocity with depth.

The shear wave velocities were then converted into shear modulus values using the formulae: (1)  $G = V_s^2 * \rho / 1000000$ 



| Where                      | G            | =                                | Shear Modulus (MPa)                                  |  |
|----------------------------|--------------|----------------------------------|------------------------------------------------------|--|
|                            | Vs           | =                                | Shear Wave Velocity (m/s)                            |  |
|                            | ρ            | =                                | Density (kg/m <sup>3</sup> )                         |  |
| The Vp velocities were c   | ombined w    | vith the s                       | shear wave velocity data to calculate Poissons ratio |  |
| dynamic Bulk modulus a     | nd Youngs    | Modulus                          | for each of the layers outlined by the P-wave data   |  |
| analysis using the formula | ie in Davies | & Schult                         | eiss, 1980 as follows:                               |  |
| (2)                        | u=(Vp        | )∕Vs)²-2 /                       | 2((Vp/Vs) <sup>2</sup> -2)                           |  |
| (3)                        | E = 2\       | $E = 2V_s^2 \rho (1 + u) / 1000$ |                                                      |  |
| where                      | Е            | =                                | Youngs Modulus (GPa)                                 |  |
|                            | Vs           | =                                | Shear Wave Velocity (m/s)                            |  |
|                            | ρ            | =                                | Density (kg/m <sup>3</sup> )                         |  |
|                            | u            | =                                | Poisson's ratio                                      |  |
| and                        |              |                                  |                                                      |  |
| (4)                        | В            | =                                | E/3(1-2 u)                                           |  |
| where                      | В            | =                                | Bulk Modulus (MPa)                                   |  |
|                            | Е            | =                                | Youngs Modulus (MPa)                                 |  |
|                            | u            | =                                | Poisson's ratio                                      |  |

For the purpose of the calculation in this report an overburden density of 2000 kg/m<sup>3</sup> and a rock density of 2700 kg/m<sup>3</sup> has been assumed.

Each of the profiles S1-S20 were processed for 1D MASW profiles. The 1D profiles are located in the centre of the spreads S1-S20 as shown (with the exception of Profile S7). The surface waves for Profile S6 were insufficiently poor to produce a 1D profile. For profile S7m, traces 1-9 were rejected from processing, to improve the final result for S7.

## 6.3.4 Relocation

All data were referenced using a Garmin GPS-60 with c.2m accuracy.



## 7. APPENDIX B: MASW RESULTS























Note that a results has not been obtained for Profile S6, this data has been compromised due to the shallow bedrock.








































































# 8. APPENDIX C: DYNAMIC MODULI

| S1                                                                                                                                                                                                                                                                                                                                                     | Calculat                                                                                      | tion of s                                                    | tatic and                                                    | dynamic mo                                                                    | oduli                                                                                           |                                                                               |                                                                                       |                                                                                        |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|--|
| Depth<br>(m bgl)                                                                                                                                                                                                                                                                                                                                       | Vs<br>m/sec                                                                                   | Vp<br>m/sec                                                  | density<br>kg/m^3                                            | Poissons<br>ratio                                                             | Shear*<br>Mod.<br>MPa<br>Dynamic                                                                | Youngs<br>*<br>Mod.<br>GPa<br>Dynamic                                         | Bulk*<br>Mod.<br>GPa<br>Dynamic                                                       | Youngs**<br>Mod.<br>MPa<br>Static                                                      |  |  |
|                                                                                                                                                                                                                                                                                                                                                        |                                                                                               |                                                              |                                                              |                                                                               | Gmax                                                                                            | Emax                                                                          | -                                                                                     |                                                                                        |  |  |
| 2.535<br>3.833<br>3.833<br>5.456<br>5.456<br>7.485<br>7.485<br>10.021                                                                                                                                                                                                                                                                                  | 724.209<br>724.209<br>704.573<br>704.573<br>738.94<br>738.94<br>764.933<br>764.933<br>835.065 | 1167<br>4366<br>4366<br>4366<br>4366<br>4366<br>4366<br>4366 | 2700<br>2700<br>2700<br>2700<br>2700<br>2700<br>2700<br>2700 | 0.187<br>0.486<br>0.487<br>0.487<br>0.485<br>0.485<br>0.485<br>0.484<br>0.484 | 1416.09<br>1416.09<br>1340.34<br>1340.34<br>1474.29<br>1474.29<br>1579.83<br>1579.83<br>1882.80 | 3.361<br>4.208<br>3.985<br>3.985<br>4.379<br>4.379<br>4.689<br>4.689<br>5.577 | 1.789<br>49.579<br>49.680<br>49.680<br>49.502<br>49.502<br>49.361<br>49.361<br>48.957 | 295.67<br>428.37<br>391.56<br>391.56<br>457.50<br>457.50<br>512.17<br>512.17<br>681 73 |  |  |
| 13 101                                                                                                                                                                                                                                                                                                                                                 | 835.005                                                                                       | 4300                                                         | 2700                                                         | 0.481                                                                         | 1882.80                                                                                         | 5.577                                                                         | 40.957                                                                                | 681 73                                                                                 |  |  |
| 13.191       835.065       4366       2700       0.481       1882.80       5.577       48.957       681.73         13.191       1133.921       4366       2700       0.464       3471.60       10.164       46.838       1835.25         17.153       1133.921       4366       2700       0.464       3471.60       10.164       46.838       1835.25 |                                                                                               |                                                              |                                                              |                                                                               |                                                                                                 |                                                                               |                                                                                       |                                                                                        |  |  |
| ** converted to static equivalent using empirical correlation from Heerden, 1987.                                                                                                                                                                                                                                                                      |                                                                                               |                                                              |                                                              |                                                                               |                                                                                                 |                                                                               |                                                                                       |                                                                                        |  |  |
| Soil density taken as 2000 kg/m <sup>3</sup><br>& 2500 kg/m <sup>3</sup> for Weathered Bedrock & 2700 kg/m <sup>3</sup> for Fresh Bedrock                                                                                                                                                                                                              |                                                                                               |                                                              |                                                              |                                                                               |                                                                                                 |                                                                               |                                                                                       |                                                                                        |  |  |



| S2                                                                                    | Calculat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tion of s                                                         | tatic and                                                    | dynamic mo                                                                                      | oduli                                                                                          |                                                                                        |                                                                                            |                                                                                               |  |  |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|--|
| Depth<br>(m bgl)                                                                      | Vs<br>m/sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Vp<br>m/sec                                                       | density<br>kg/m^3                                            | Poissons<br>ratio                                                                               | Shear*<br>Mod.<br>MPa<br>Dynamic<br>Gmax                                                       | Youngs<br>*<br>Mod.<br>GPa<br>Dynamic<br>Emax                                          | Bulk*<br>Mod.<br>GPa<br>Dynamic                                                            | Youngs**<br>Mod.<br>MPa<br>Static                                                             |  |  |
| 2.138<br>3.623<br>3.623<br>5.479<br>5.479<br>7.8<br>7.8<br>10.701<br>10.701<br>14.327 | 172.1<br>172.1<br>289.923<br>289.923<br>335.543<br>335.543<br>337.06<br>337.06<br>416.25<br>416.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 847<br>847<br>847<br>1986<br>1986<br>4413<br>4413<br>4413<br>4413 | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2500<br>2500 | 0.478<br>0.478<br>0.434<br>0.434<br>0.485<br>0.485<br>0.485<br>0.497<br>0.497<br>0.496<br>0.496 | 59.24<br>59.24<br>168.11<br>168.11<br>225.18<br>225.18<br>284.02<br>284.02<br>284.02<br>467.81 | 0.175<br>0.175<br>0.482<br>0.482<br>0.669<br>0.669<br>0.850<br>0.850<br>1.399<br>1.399 | 1.356<br>1.356<br>1.211<br>1.211<br>7.588<br>7.588<br>48.308<br>48.308<br>51.958<br>51.958 | 2.26<br>2.26<br>12.00<br>12.00<br>20.60<br>20.60<br>30.62<br>30.62<br>30.62<br>69.63<br>69.63 |  |  |
| 14.327<br>18.859<br>18.859<br>24.524<br>24.524<br>30.655<br>** convert                | 14.327       416.25       4413       2700       0.496       467.81       1.399       51.958       69.63         14.327       544.152       4413       2700       0.492       799.47       2.386       51.515       167.97         18.859       544.152       4413       2700       0.492       799.47       2.386       51.515       167.97         18.859       695.556       4413       2700       0.487       1306.26       3.885       50.840       375.53         24.524       695.556       4413       2700       0.487       1306.26       3.885       50.840       375.53         24.524       1165.625       4413       2700       0.487       1306.26       3.885       50.840       375.53         24.524       1165.625       4413       2700       0.463       3668.44       10.730       47.690       2007.07         30.655       1165.625       4413       2700       0.463       3668.44       10.730       47.690       2007.07         ** converted to static equivalent using empirical correlation from Heerden, 1987. |                                                                   |                                                              |                                                                                                 |                                                                                                |                                                                                        |                                                                                            |                                                                                               |  |  |
| Soil densi<br>& 2500 kc                                                               | Soil density taken as 2000 kg/m <sup>3</sup><br>& 2500 kg/m <sup>3</sup> for Weathered Bedrock & 2700 kg/m <sup>3</sup> for Fresh Bedrock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   |                                                              |                                                                                                 |                                                                                                |                                                                                        |                                                                                            |                                                                                               |  |  |



| S3                                                                                                                                          | Calcul                                                                                                                                                                                               | ation of :                                                                                                 | static and                                                   | dynamic m                                                                                                                                                               | oduli                                                                                                                                           |                                                                                                                                              |                                                                                                                                                     |                                                                                                                                     |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Depth<br>(m bgl)                                                                                                                            | Vs<br>m/sec                                                                                                                                                                                          | Vp<br>m/sec                                                                                                | density<br>kg/m^3                                            | Poissons<br>ratio                                                                                                                                                       | Shear*<br>Mod.<br>MPa<br>Dynamic<br>Gmax                                                                                                        | Youngs<br>*<br>Mod.<br>GPa<br>Dynamic<br>Emax                                                                                                | Bulk*<br>Mod.<br>GPa<br>Dynamic                                                                                                                     | Youngs**<br>Mod.<br>MPa<br>Static                                                                                                   |  |  |
| 2.218<br>3.758<br>3.758<br>5.683<br>5.683<br>8.089<br>8.089<br>11.097<br>11.097<br>14.857<br>14.857<br>19.557<br>19.557<br>25.432<br>25.432 | 210.947<br>210.947<br>196.613<br>244.675<br>244.675<br>346.489<br>346.489<br>406.174<br>406.174<br>484.267<br>484.267<br>597.354<br>597.354<br>988.723                                               | 1003<br>1625<br>1625<br>1625<br>1625<br>1625<br>5009<br>5009<br>5009<br>5009<br>5009<br>5009<br>5009<br>50 | 2000<br>2000<br>2000<br>2000<br>2000<br>2500<br>2500<br>2500 | 0.477<br>0.491<br>0.493<br>0.493<br>0.488<br>0.488<br>0.498<br>0.498<br>0.498<br>0.497<br>0.497<br>0.497<br>0.495<br>0.495<br>0.495<br>0.493<br>0.493<br>0.493<br>0.480 | 89.00<br>89.00<br>77.31<br>77.31<br>119.73<br>300.14<br>300.14<br>445.44<br>445.44<br>633.19<br>633.19<br>963.45<br>963.45<br>963.45<br>2639.45 | 0.263<br>0.265<br>0.231<br>0.231<br>0.356<br>0.356<br>0.899<br>0.899<br>1.333<br>1.333<br>1.333<br>1.894<br>1.894<br>2.876<br>2.876<br>7.811 | $\begin{array}{c} 1.893\\ 5.163\\ 5.178\\ 5.178\\ 5.122\\ 5.122\\ 62.325\\ 67.149\\ 67.149\\ 66.899\\ 66.899\\ 66.459\\ 66.459\\ 64.224\end{array}$ | 4.41<br>4.48<br>3.56<br>3.56<br>7.29<br>7.29<br>33.55<br>33.55<br>64.30<br>64.30<br>114.71<br>114.71<br>228.65<br>228.65<br>1188.66 |  |  |
| 31.79<br>** convert                                                                                                                         | 31.79       988.723       5009       2700       0.480       2639.45       7.811       64.224       1188.66         ** converted to static equivalent using empirical correlation from Heerden, 1987. |                                                                                                            |                                                              |                                                                                                                                                                         |                                                                                                                                                 |                                                                                                                                              |                                                                                                                                                     |                                                                                                                                     |  |  |
| Soil densi<br>& 2500 kc                                                                                                                     | Soil density taken as 2000 kg/m <sup>3</sup><br>& 2500 kg/m <sup>3</sup> for Weathered Bedrock & 2700 kg/m <sup>3</sup> for Eresh Bedrock                                                            |                                                                                                            |                                                              |                                                                                                                                                                         |                                                                                                                                                 |                                                                                                                                              |                                                                                                                                                     |                                                                                                                                     |  |  |



| S4                                                                                                                                             | Calcul                                                                                                                                                          | ation of :                                                           | static and                                                  | dynamic m                                                                                                                                                      | oduli                                                                                                                                                      |                                                                                                                                                       |                                                                                                                                                     |                                                                                                                              |  |
|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--|
| Depth<br>(m bgl)                                                                                                                               | Vs<br>m/sec                                                                                                                                                     | Vp<br>m/sec                                                          | density<br>kg/m^3                                           | Poissons<br>ratio                                                                                                                                              | Shear*<br>Mod.<br>MPa<br>Dynamic<br>Gmax                                                                                                                   | Youngs<br>*<br>Mod.<br>GPa<br>Dynamic<br>Emax                                                                                                         | Bulk*<br>Mod.<br>GPa<br>Dynamic                                                                                                                     | Youngs**<br>Mod.<br>MPa<br>Static                                                                                            |  |
| 1.929<br>3.269<br>3.269<br>4.943<br>4.943<br>7.036<br>7.036<br>9.652<br>9.652<br>12.922<br>12.922<br>17.01<br>17.01<br>22.12<br>22.12<br>27.65 | 128.263<br>128.263<br>242.129<br>242.129<br>261.315<br>261.315<br>209.101<br>209.101<br>238.458<br>337.561<br>337.561<br>440.44<br>440.44<br>718.683<br>718.683 | 1078<br>1673<br>1673<br>1673<br>1673<br>1673<br>1673<br>1673<br>1673 | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200 | 0.493<br>0.497<br>0.489<br>0.489<br>0.487<br>0.487<br>0.492<br>0.492<br>0.492<br>0.490<br>0.490<br>0.494<br>0.494<br>0.490<br>0.490<br>0.490<br>0.472<br>0.472 | 32.90<br>32.90<br>117.25<br>117.25<br>136.57<br>136.57<br>87.45<br>87.45<br>113.72<br>113.72<br>284.87<br>284.87<br>523.77<br>523.77<br>1394.56<br>1394.56 | 0.098<br>0.099<br>0.349<br>0.349<br>0.406<br>0.406<br>0.261<br>0.261<br>0.261<br>0.339<br>0.339<br>0.339<br>0.851<br>1.561<br>1.561<br>4.105<br>4.105 | 2.280<br>5.554<br>5.442<br>5.442<br>5.416<br>5.416<br>5.481<br>5.481<br>5.446<br>23.863<br>23.863<br>23.863<br>25.484<br>25.484<br>24.322<br>24.322 | 0.87<br>0.87<br>7.05<br>7.05<br>9.05<br>4.36<br>4.36<br>6.71<br>6.71<br>30.66<br>30.66<br>83.37<br>83.37<br>411.21<br>411.21 |  |
| Soil density taken as 2000 kg/m <sup>3</sup>                                                                                                   |                                                                                                                                                                 |                                                                      |                                                             |                                                                                                                                                                |                                                                                                                                                            |                                                                                                                                                       |                                                                                                                                                     |                                                                                                                              |  |



| S5                                                                                                                                        | Calculat | tion of s | tatic and | dynamic mo | oduli         |                    |              |                 |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|-----------|------------|---------------|--------------------|--------------|-----------------|--|
| Depth                                                                                                                                     | Vs       | Vp        | density   | Poissons   | Shear*<br>Mod | Youngs<br>*<br>Mod | Bulk*<br>Mod | Youngs**<br>Mod |  |
| (m bgl)                                                                                                                                   | m/sec    | m/sec     | kg/m^3    | Tatio      | MPa           | GPa                | GPa          | MPa             |  |
| ( 0)                                                                                                                                      |          |           | U U       |            | Dynamic       | Dynamic            | Dynamic      | Static          |  |
|                                                                                                                                           |          |           |           |            | Gmax          | Emax               |              |                 |  |
|                                                                                                                                           |          |           |           |            |               |                    |              |                 |  |
| 2.299                                                                                                                                     | 522.01   | 3385      | 2700      | 0.488      | 735.73        | 2.189              | 29.956       | 145.73          |  |
| 3.272                                                                                                                                     | 522.01   | 3385      | 2700      | 0.488      | 735.73        | 2.189              | 29.956       | 145.73          |  |
| 3.272                                                                                                                                     | 651.122  | 3385      | 2700      | 0.481      | 1144.69       | 3.390              | 29.411       | 299.85          |  |
| 4.489                                                                                                                                     | 651.122  | 3385      | 2700      | 0.481      | 1144.69       | 3.390              | 29.411       | 299.85          |  |
| 4.489                                                                                                                                     | 899.641  | 3385      | 2700      | 0.462      | 2185.26       | 6.390              | 28.024       | 853.30          |  |
| 6.01                                                                                                                                      | 899.641  | 3385      | 2700      | 0.462      | 2185.26       | 6.390              | 28.024       | 853.30          |  |
| 6.01                                                                                                                                      | 1042.072 | 3385      | 2700      | 0.448      | 2931.97       | 8.489              | 27.028       | 1363.54         |  |
| 7.911                                                                                                                                     | 1042.072 | 3385      | 2700      | 0.448      | 2931.97       | 8.489              | 27.028       | 1363.54         |  |
| 7.911                                                                                                                                     | 1522.057 | 3385      | 2700      | 0.373      | 6254.98       | 17.180             | 22.597       | 4363.54         |  |
| 10.287                                                                                                                                    | 1522.057 | 3385      | 2700      | 0.373      | 6254.98       | 17.180             | 22.597       | 4363.54         |  |
|                                                                                                                                           |          |           |           |            |               |                    |              |                 |  |
| ** converted to static equivalent using empirical correlation from Heerden, 1987.                                                         |          |           |           |            |               |                    |              |                 |  |
| Soil density taken as 2000 kg/m <sup>3</sup><br>& 2500 kg/m <sup>3</sup> for Weathered Bedrock & 2700 kg/m <sup>3</sup> for Fresh Bedrock |          |           |           |            |               |                    |              |                 |  |



| S7E                                                          | Calculat                                                                                                                                                                                                                                                            | tion of s                                            | tatic and                                                    | dynamic mo                                                  | oduli                                                              |                                                             |                                                                   |                                                               |  |  |  |
|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------|--|--|--|
| Depth<br>(m bgl)                                             | Vs<br>m/sec                                                                                                                                                                                                                                                         | Vp<br>m/sec                                          | density<br>kg/m^3                                            | Poissons<br>ratio                                           | Shear*<br>Mod.<br>MPa<br>Dynamic<br>Gmax                           | Youngs<br>*<br>Mod.<br>GPa<br>Dynamic<br>Emax               | Bulk*<br>Mod.<br>GPa<br>Dynamic                                   | Youngs**<br>Mod.<br>MPa<br>Static                             |  |  |  |
| 1.364<br>2.311<br>2.311<br>3.495<br>3.495                    | 211.063<br>211.063<br>237.442<br>237.442<br>291.647                                                                                                                                                                                                                 | 827<br>1441<br>1441<br>1441<br>1441                  | 2000<br>2000<br>2000<br>2000<br>2000                         | 0.465<br>0.489<br>0.486<br>0.486<br>0.479                   | 89.10<br>89.10<br>112.76<br>112.76<br>170.12                       | 0.261<br>0.265<br>0.335<br>0.335<br>0.503                   | 1.249<br>4.034<br>4.003<br>4.003<br>3.926                         | 4.36<br>4.48<br>6.59<br>6.59<br>12.88                         |  |  |  |
| 4.975<br>4.975<br>6.825<br>6.825<br>9.137<br>9.137<br>12.027 | 291.647<br>349.251<br>349.251<br>433.991<br>433.991<br>544.834<br>544.834                                                                                                                                                                                           | 1441<br>4592<br>4592<br>4592<br>4592<br>4592<br>4592 | 2000<br>2500<br>2500<br>2700<br>2700<br>2700<br>2700<br>2700 | 0.479<br>0.497<br>0.497<br>0.495<br>0.495<br>0.493<br>0.493 | 170.12<br>304.94<br>304.94<br>508.54<br>508.54<br>801.48<br>801.48 | 0.503<br>0.913<br>0.913<br>1.521<br>1.521<br>2.393<br>2.393 | 3.926<br>52.310<br>52.310<br>56.255<br>56.255<br>55.865<br>55.865 | 12.88<br>34.43<br>34.43<br>79.91<br>79.91<br>168.78<br>168.78 |  |  |  |
| 12.027<br>15.64<br>15.64<br>19.55                            | 12.027544.834459227000.493801.482.39355.865168.7812.027663.052459227000.4891187.023.53655.351321.4115.64663.052459227000.4891187.023.53655.351321.4115.641075.414459227000.4713122.599.18752.7701553.3319.551075.414459227000.4713122.599.18752.7701553.33          |                                                      |                                                              |                                                             |                                                                    |                                                             |                                                                   |                                                               |  |  |  |
| Soil densi                                                   | <ul> <li>** converted to static equivalent using empirical correlation from Heerden, 1987.</li> <li>Soil density taken as 2000 kg/m<sup>3</sup></li> <li>&amp; 2500 kg/m<sup>3</sup> for Weathered Bedrock &amp; 2700 kg/m<sup>3</sup> for Eresh Bedrock</li> </ul> |                                                      |                                                              |                                                             |                                                                    |                                                             |                                                                   |                                                               |  |  |  |



| S8                                           | Calcul                                                                                                                                                                                                                                                      | ation of                     | static and                   | dynamic m                        | oduli                                    |                                               |                                 |                                     |  |  |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|----------------------------------|------------------------------------------|-----------------------------------------------|---------------------------------|-------------------------------------|--|--|
| Depth<br>(m bgl)                             | Vs<br>m/sec                                                                                                                                                                                                                                                 | Vp<br>m/sec                  | density<br>kg/m^3            | Poissons<br>ratio                | Shear*<br>Mod.<br>MPa<br>Dynamic<br>Gmax | Youngs<br>*<br>Mod.<br>GPa<br>Dynamic<br>Emax | Bulk*<br>Mod.<br>GPa<br>Dynamic | Youngs**<br>Mod.<br>MPa<br>Static   |  |  |
| 1.479<br>2.506                               | 150.122<br>150.122                                                                                                                                                                                                                                          | 790<br>790                   | 2000<br>2000                 | 0.481<br>0.481                   | 45.07<br>45.07                           | 0.134<br>0.134                                | 1.188<br>1.188                  | 1.44<br>1.44                        |  |  |
| 2.506<br>3.79<br>3.79                        | 169.021<br>169.021<br>237.437                                                                                                                                                                                                                               | 790<br>790<br>1568           | 2000<br>2000<br>2000         | 0.476<br>0.476<br>0.488          | 57.14<br>57.14<br>112.75                 | 0.169<br>0.169<br>0.336                       | 1.172<br>1.172<br>4.767         | 2.12<br>2.12<br>6.60                |  |  |
| 5.395<br>5.395<br>7.401                      | 237.437<br>295.801<br>295.801                                                                                                                                                                                                                               | 1568<br>1568<br>1568         | 2000<br>2000<br>2000         | 0.488<br>0.482<br>0.482          | 112.75<br>175.00<br>175.00               | 0.336<br>0.519<br>0.519                       | 4.767<br>4.684<br>4.684         | 6.60<br>13.53<br>13.53              |  |  |
| 7.401<br>9.909<br>9.909                      | 352.513<br>352.513<br>432.671                                                                                                                                                                                                                               | 3185<br>3185<br>3185         | 2500<br>2500<br>2700         | 0.494<br>0.494<br>0.491          | 310.66<br>310.66<br>505.45               | 0.928<br>0.928<br>1.507                       | 24.946<br>24.946<br>26.715      | 35.37<br>35.37<br>78.68             |  |  |
| 13.044<br>13.044<br>16.963                   | 432.671<br>538.016<br>538.016<br>896 5                                                                                                                                                                                                                      | 3185<br>3185<br>3185<br>3185 | 2700<br>2700<br>2700<br>2700 | 0.491<br>0.485<br>0.485<br>0.457 | 505.45<br>781.55<br>781.55<br>2170.02    | 1.507<br>2.322<br>2.322<br>6.323              | 26.715<br>26.347<br>26.347      | 78.68<br>160.56<br>160.56<br>838 73 |  |  |
| 21.204                                       | 16.963         896.5         3185         2700         0.457         2170.02         6.323         24.496         838.73           21.204         896.5         3185         2700         0.457         2170.02         6.323         24.496         838.73 |                              |                              |                                  |                                          |                                               |                                 |                                     |  |  |
| Soil density taken as 2000 kg/m <sup>3</sup> |                                                                                                                                                                                                                                                             |                              |                              |                                  |                                          |                                               |                                 |                                     |  |  |
| & 2500 kg                                    | g/m <sup>3</sup> for We                                                                                                                                                                                                                                     | athered E                    | Bedrock &                    | 2700 kg/m <sup>3</sup> f         | or Fresh Be                              | drock                                         |                                 |                                     |  |  |



| S9                                                                                | Calcul                                       | ation of a | static and | dynamic m | oduli   |         |         |          |  |
|-----------------------------------------------------------------------------------|----------------------------------------------|------------|------------|-----------|---------|---------|---------|----------|--|
| Donth                                                                             | Ve                                           | ١٧n        | doneity    | Poissons  | Shoar*  | Youngs  | Bulk*   | Vounge** |  |
| Deptil                                                                            | V 5                                          | ٧Þ         | uensity    | rotio     | Mod     | Mod     | Mod     | Mod      |  |
| (m bal)                                                                           | m/soc                                        | m/soc      | ka/m∆3     | Tallo     | MPa     | GPa     | GPo     | MPa      |  |
| (III bgi)                                                                         | 11/360                                       | 11/360     | kg/IIP3    |           | Dynamic | Dynamic | Dynamic | Static   |  |
|                                                                                   |                                              |            |            |           | Gmax    | Emay    | Dynamic | Otatic   |  |
|                                                                                   |                                              |            |            |           | Gillax  | EIIIax  |         |          |  |
| 0 704                                                                             | 112 657                                      | 238        | 2000       | 0.356     | 25.38   | 0.069   | 0 079   | 0 48     |  |
| 1.583                                                                             | 112.657                                      | 238        | 2000       | 0.356     | 25.38   | 0.069   | 0.079   | 0.48     |  |
| 1.583                                                                             | 188.616                                      | 1365       | 2000       | 0.490     | 71.15   | 0.212   | 3.632   | 3.10     |  |
| 2.682                                                                             | 188.616                                      | 1365       | 2000       | 0.490     | 71.15   | 0.212   | 3.632   | 3.10     |  |
| 2.682                                                                             | 273.9                                        | 1365       | 2000       | 0.479     | 150.04  | 0.444   | 3.526   | 10.47    |  |
| 4.056                                                                             | 273.9                                        | 1365       | 2000       | 0.479     | 150.04  | 0.444   | 3.526   | 10.47    |  |
| 4.056                                                                             | 287.793                                      | 1365       | 2000       | 0.477     | 165.65  | 0.489   | 3.506   | 12.30    |  |
| 5.774                                                                             | 287.793                                      | 1365       | 2000       | 0.477     | 165.65  | 0.489   | 3.506   | 12.30    |  |
| 5.774                                                                             | 311.009                                      | 4880       | 2500       | 0.498     | 241.82  | 0.724   | 59.214  | 23.50    |  |
| 7.921                                                                             | 311.009                                      | 4880       | 2500       | 0.498     | 241.82  | 0.724   | 59.214  | 23.50    |  |
| 7.921                                                                             | 369.938                                      | 4880       | 2700       | 0.497     | 369.51  | 1.106   | 63.806  | 47.26    |  |
| 10.605                                                                            | 369.938                                      | 4880       | 2700       | 0.497     | 369.51  | 1.106   | 63.806  | 47.26    |  |
| 10.605                                                                            | 471.71                                       | 4880       | 2700       | 0.495     | 600.78  | 1.797   | 63.498  | 105.18   |  |
| 13.96                                                                             | 471.71                                       | 4880       | 2700       | 0.495     | 600.78  | 1.797   | 63.498  | 105.18   |  |
| 13.96                                                                             | 586.857                                      | 4880       | 2700       | 0.493     | 929.88  | 2.776   | 63.059  | 215.63   |  |
| 18.153                                                                            | 586.857                                      | 4880       | 2700       | 0.493     | 929.88  | 2.776   | 63.059  | 215.63   |  |
| 18.153                                                                            | 969.499                                      | 4880       | 2700       | 0.479     | 2537.81 | 7.509   | 60.915  | 1113.74  |  |
| 22.691 969.499 4880 2700 0.479 2537.81 7.509 60.915 1113.74                       |                                              |            |            |           |         |         |         |          |  |
| ** converted to static equivalent using empirical correlation from Heerden, 1987. |                                              |            |            |           |         |         |         |          |  |
| Soil densi                                                                        | Soil density taken as 2000 kg/m <sup>3</sup> |            |            |           |         |         |         |          |  |

& 2500 kg/m<sup>3</sup> for Weathered Bedrock & 2700 kg/m<sup>3</sup> for Fresh Bedrock



| S10                                                                               | Calcul      | ation of a | static and | dynamic m    | oduli       |                    |         |                 |  |
|-----------------------------------------------------------------------------------|-------------|------------|------------|--------------|-------------|--------------------|---------|-----------------|--|
| Depth                                                                             | Vs          | Vp         | density    | Poissons     | Shear*      | Youngs<br>*<br>Mod | Bulk*   | Youngs**<br>Mod |  |
| (m bal)                                                                           | m/sec       | m/sec      | ka/m^3     | Tallo        | MPa         | GPa                | GPa     | MPa             |  |
| (                                                                                 |             |            |            |              | Dynamic     | Dynamic            | Dynamic | Static          |  |
|                                                                                   |             |            |            |              | Gmax        | Emax               |         |                 |  |
|                                                                                   |             |            |            |              |             |                    |         |                 |  |
| 2.775                                                                             | 154.387     | 1141       | 2000       | 0.491        | 47.67       | 0.142              | 2.540   | 1.60            |  |
| 4.197                                                                             | 154.387     | 1141       | 2000       | 0.491        | 47.67       | 0.142              | 2.540   | 1.60            |  |
| 4.197                                                                             | 214.02      | 1141       | 2000       | 0.482        | 91.61       | 0.271              | 2.482   | 4.65            |  |
| 5.974                                                                             | 214.02      | 1141       | 2000       | 0.482        | 91.61       | 0.271              | 2.482   | 4.65            |  |
| 5.974                                                                             | 286.006     | 1141       | 2000       | 0.466        | 163.60      | 0.480              | 2.386   | 11.91           |  |
| 8.195                                                                             | 286.006     | 1141       | 2000       | 0.466        | 163.60      | 0.480              | 2.386   | 11.91           |  |
| 8.195                                                                             | 343.974     | 4368       | 2500       | 0.497        | 295.80      | 0.886              | 47.304  | 32.73           |  |
| 10.971                                                                            | 343.974     | 4368       | 2500       | 0.497        | 295.80      | 0.886              | 47.304  | 32.73           |  |
| 10.971                                                                            | 412.08      | 4368       | 2700       | 0.496        | 458.49      | 1.371              | 50.903  | 67.35           |  |
| 14.442                                                                            | 412.08      | 4368       | 2700       | 0.496        | 458.49      | 1.371              | 50.903  | 67.35           |  |
| 14.442                                                                            | 512.408     | 4368       | 2700       | 0.493        | 708.92      | 2.117              | 50.569  | 137.86          |  |
| 18.78                                                                             | 512.408     | 4368       | 2700       | 0.493        | 708.92      | 2.117              | 50.569  | 137.86          |  |
| 18.78                                                                             | 866.895     | 4368       | 2700       | 0.479        | 2029.07     | 6.004              | 48.809  | 770.00          |  |
| 23.475                                                                            | 866.895     | 4368       | 2700       | 0.479        | 2029.07     | 6.004              | 48.809  | 770.00          |  |
|                                                                                   |             |            |            |              |             |                    |         |                 |  |
| ** converted to static equivalent using empirical correlation from Heerden, 1987. |             |            |            |              |             |                    |         |                 |  |
| Soil density taken as 2000 kg/m <sup>3</sup>                                      |             |            |            |              |             |                    |         |                 |  |
| & 2500 kg                                                                         | g/m° for We | athered E  | Bedrock &  | 2700 kg/m³ f | or Fresh Be | drock              |         |                 |  |



| S11                                                                               | Calculat | tion of s                                    | tatic and | dynamic mo | oduli   |         |         |          |  |
|-----------------------------------------------------------------------------------|----------|----------------------------------------------|-----------|------------|---------|---------|---------|----------|--|
|                                                                                   | ,,       | <b> </b> '                                   | ĺ         |            |         | Youngs  |         |          |  |
| Depth                                                                             | Vs       | Vp                                           | density   | Poissons   | Shear*  | *       | Bulk*   | Youngs** |  |
|                                                                                   | 1        | 1 '                                          |           | ratio      | Mod.    | Mod.    | Mod.    | Mod.     |  |
| (m bgl)                                                                           | m/sec    | m/sec                                        | kg/m^3    |            | MPa     | GPa     | GPa     | MPa      |  |
|                                                                                   | 1        | 1 '                                          |           |            | Dynamic | Dynamic | Dynamic | Static   |  |
|                                                                                   |          | <u>                                     </u> |           |            | Gmax    | Emax    |         |          |  |
|                                                                                   | 1        | 1                                            |           |            |         |         |         |          |  |
| 1.06                                                                              | 148.524  | 672                                          | 2000      | 0.474      | 44.12   | 0.130   | 0.844   | 1.38     |  |
| 2.385                                                                             | 148.524  | 672                                          | 2000      | 0.474      | 44.12   | 0.130   | 0.844   | 1.38     |  |
| 2.385                                                                             | 208.828  | 672                                          | 2000      | 0.447      | 87.22   | 0.252   | 0.787   | 4.12     |  |
| 4.041                                                                             | 208.828  | 672                                          | 2000      | 0.447      | 87.22   | 0.252   | 0.787   | 4.12     |  |
| 4.041                                                                             | 248.207  | 1493                                         | 2000      | 0.486      | 123.21  | 0.366   | 4.294   | 7.62     |  |
| 6.111                                                                             | 248.207  | 1493                                         | 2000      | 0.486      | 123.21  | 0.366   | 4.294   | 7.62     |  |
| 6.111                                                                             | 249.949  | 1493                                         | 2000      | 0.486      | 124.95  | 0.371   | 4.291   | 7.80     |  |
| 8.698                                                                             | 249.949  | 1493                                         | 2000      | 0.486      | 124.95  | 0.371   | 4.291   | 7.80     |  |
| 8.698                                                                             | 295.387  | 1493                                         | 2000      | 0.480      | 174.51  | 0.516   | 4.225   | 13.44    |  |
| 11.932                                                                            | 295.387  | 1493                                         | 2000      | 0.480      | 174.51  | 0.516   | 4.225   | 13.44    |  |
| 11.932                                                                            | 393.431  | 3437                                         | 2500      | 0.493      | 386.97  | 1.156   | 29.016  | 50.79    |  |
| 15.974                                                                            | 393.431  | 3437                                         | 2500      | 0.493      | 386.97  | 1.156   | 29.016  | 50.79    |  |
| 15.974                                                                            | 505.683  | 3437                                         | 2700      | 0.489      | 690.43  | 2.056   | 30.974  | 131.39   |  |
| 21.027                                                                            | 505.683  | 3437                                         | 2700      | 0.489      | 690.43  | 2.056   | 30.974  | 131.39   |  |
| 21.027                                                                            | 632.946  | 3437                                         | 2700      | 0.482      | 1081.68 | 3.207   | 30.453  | 273.61   |  |
| 27.343                                                                            | 632.946  | 3437                                         | 2700      | 0.482      | 1081.68 | 3.207   | 30.453  | 273.61   |  |
| 27.343                                                                            | 1046.011 | 3437                                         | 2700      | 0.449      | 2954.18 | 8.561   | 27.956  | 1382.69  |  |
| 34.179                                                                            | 1046.011 | 3437                                         | 2700      | 0.449      | 2954.18 | 8.561   | 27.956  | 1382.69  |  |
| ** converted to static equivalent using empirical correlation from Heerden, 1987. |          |                                              |           |            |         |         |         |          |  |
| Soil density taken as 2000 kg/m <sup>3</sup>                                      |          |                                              |           |            |         |         |         |          |  |

& 2500 kg/m<sup>3</sup> for Weathered Bedrock & 2700 kg/m<sup>3</sup> for Fresh Bedrock



| S12                                                                                                                                       | Calcul                                                                                                                                            | ation of :  | static and        | dynamic m         | oduli                                    |                                               |                                 |                                   |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------|-------------------|------------------------------------------|-----------------------------------------------|---------------------------------|-----------------------------------|--|--|--|
| Depth<br>(m bgl)                                                                                                                          | Vs<br>m/sec                                                                                                                                       | Vp<br>m/sec | density<br>kg/m^3 | Poissons<br>ratio | Shear*<br>Mod.<br>MPa<br>Dynamic<br>Gmax | Youngs<br>*<br>Mod.<br>GPa<br>Dynamic<br>Emax | Bulk*<br>Mod.<br>GPa<br>Dynamic | Youngs**<br>Mod.<br>MPa<br>Static |  |  |  |
| 1.724                                                                                                                                     | 169.139                                                                                                                                           | 784         | 2000              | 0.476             | 57.22                                    | 0.169                                         | 1.153                           | 2.13                              |  |  |  |
| 2.922                                                                                                                                     | 169.139                                                                                                                                           | 784         | 2000              | 0.476             | 57.22                                    | 0.169                                         | 1.153                           | 2.13                              |  |  |  |
| 2.922                                                                                                                                     | 174.779                                                                                                                                           | 784         | 2000              | 0.474             | 61.10                                    | 0.180                                         | 1.148                           | 2.36                              |  |  |  |
| 4.419                                                                                                                                     | 174.779                                                                                                                                           | 784         | 2000              | 0.474             | 61.10                                    | 0.180                                         | 1.148                           | 2.36                              |  |  |  |
| 4.419                                                                                                                                     | 212.18                                                                                                                                            | 784         | 2000              | 0.460             | 90.04                                    | 0.263                                         | 1.109                           | 4.42                              |  |  |  |
| 6.29                                                                                                                                      | 212.18                                                                                                                                            | 784         | 2000              | 0.460             | 90.04                                    | 0.263                                         | 1.109                           | 4.42                              |  |  |  |
| 6.29                                                                                                                                      | 176.499                                                                                                                                           | 784         | 2000              | 0.473             | 62.30                                    | 0.184                                         | 1.146                           | 2.44                              |  |  |  |
| 8.629                                                                                                                                     | 176.499                                                                                                                                           | 784         | 2000              | 0.473             | 62.30                                    | 0.184                                         | 1.146                           | 2.44                              |  |  |  |
| 8.629                                                                                                                                     | 192.222                                                                                                                                           | 784         | 2000              | 0.468             | 73.90                                    | 0.217                                         | 1.131                           | 3.21                              |  |  |  |
| 11.553                                                                                                                                    | 192.222                                                                                                                                           | 784         | 2000              | 0.468             | 73.90                                    | 0.217                                         | 1.131                           | 3.21                              |  |  |  |
| 11.553                                                                                                                                    | 246.242                                                                                                                                           | 1535        | 2000              | 0.487             | 121.27                                   | 0.361                                         | 4.551                           | 7.43                              |  |  |  |
| 15.207                                                                                                                                    | 246.242                                                                                                                                           | 1535        | 2000              | 0.487             | 121.27                                   | 0.361                                         | 4.551                           | 7.43                              |  |  |  |
| 15.207                                                                                                                                    | 367.017                                                                                                                                           | 1535        | 2000              | 0.470             | 269.40                                   |                                               | 4.353                           | 27.22                             |  |  |  |
| 19.775<br>19.775<br>24.719                                                                                                                | 19.775367.017153520000.470269.400.7924.35327.2219.775596.572398227000.489960.932.86141.531226.5924.719596.572398227000.489960.932.86141.531226.59 |             |                   |                   |                                          |                                               |                                 |                                   |  |  |  |
| ** converted to static equivalent using empirical correlation from Heerden, 1987.                                                         |                                                                                                                                                   |             |                   |                   |                                          |                                               |                                 |                                   |  |  |  |
| Soil density taken as 2000 kg/m <sup>3</sup><br>& 2500 kg/m <sup>3</sup> for Weathered Bedrock & 2700 kg/m <sup>3</sup> for Eresh Bedrock |                                                                                                                                                   |             |                   |                   |                                          |                                               |                                 |                                   |  |  |  |



| S13                                                                                                                                                | Calcula                                                                                                                                                           | ation of s                                                                                              | tatic and c                                                 | Jynamic mod                                                                                                                                  | luli                                                                                                                             |                                                                                                                                                |                                                                                                                                        |                                                                                                                             |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|--|
| Depth<br>(m bgl)                                                                                                                                   | Vs<br>m/sec                                                                                                                                                       | Vp<br>m/sec                                                                                             | density<br>kg/m^3                                           | Poissons<br>ratio                                                                                                                            | Shear*<br>Mod.<br>MPa                                                                                                            | Youngs<br>*<br>Mod.<br>GPa                                                                                                                     | Bulk*<br>Mod.<br>GPa                                                                                                                   | Youngs**<br>Mod.<br>MPa                                                                                                     |  |  |
|                                                                                                                                                    |                                                                                                                                                                   |                                                                                                         |                                                             |                                                                                                                                              | Dynamic<br>Gmax                                                                                                                  | Dynamic<br>Emax                                                                                                                                | Dynamic                                                                                                                                | Static                                                                                                                      |  |  |
| 0.671<br>1.509<br>1.509<br>2.557<br>2.557<br>3.867<br>3.867<br>5.505<br>5.505<br>7.552<br>7.552<br>10.111<br>10.111<br>13.309<br>13.309            | 179.165<br>179.165<br>182.397<br>182.397<br>142.582<br>142.582<br>192.487<br>192.487<br>237.375<br>237.375<br>293.974<br>293.974<br>370.176<br>370.176<br>471.091 | 318<br>318<br>901<br>901<br>901<br>1634<br>1634<br>1634<br>1634<br>1634<br>1634<br>1634<br>4324<br>4324 | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200 | 0.267<br>0.267<br>0.479<br>0.479<br>0.487<br>0.483<br>0.493<br>0.493<br>0.489<br>0.489<br>0.483<br>0.483<br>0.483<br>0.483<br>0.496<br>0.494 | 64.20<br>64.20<br>66.54<br>66.54<br>40.66<br>74.10<br>74.10<br>74.10<br>112.69<br>172.84<br>172.84<br>342.58<br>342.58<br>599.20 | $\begin{array}{c} 0.163\\ 0.163\\ 0.197\\ 0.197\\ 0.121\\ 0.221\\ 0.221\\ 0.221\\ 0.336\\ 0.513\\ 0.513\\ 1.025\\ 1.025\\ 1.790\\ \end{array}$ | 0.117<br>0.117<br>1.535<br>1.535<br>1.569<br>1.569<br>5.241<br>5.241<br>5.241<br>5.190<br>5.190<br>5.109<br>46.286<br>46.286<br>49.683 | 2.00<br>2.00<br>2.74<br>1.23<br>1.23<br>3.32<br>3.32<br>6.60<br>6.60<br>13.29<br>13.29<br>13.29<br>41.68<br>41.68<br>104.58 |  |  |
| 17.307<br>17.307                                                                                                                                   | 471.091<br>783.297                                                                                                                                                | 4324<br>4324                                                                                            | 2700                                                        | 0.494                                                                                                                                        | 599.20<br>1656.60                                                                                                                | 1.790<br>4.914                                                                                                                                 | 49.683                                                                                                                                 | 104.58<br>553.18                                                                                                            |  |  |
| 21.634 783.297 4324 2700 0.483 1656.60 4.914 48.273 553.18<br>** converted to static equivalent using empirical correlation from Heerden,<br>1987. |                                                                                                                                                                   |                                                                                                         |                                                             |                                                                                                                                              |                                                                                                                                  |                                                                                                                                                |                                                                                                                                        |                                                                                                                             |  |  |
| Soil densi'<br>& 2500 kc                                                                                                                           | Soil density taken as 2000 kg/m <sup>3</sup><br>& 2500 kg/m <sup>3</sup> for Weathered Bedrock & 2700 kg/m <sup>3</sup> for Eresh Bedrock                         |                                                                                                         |                                                             |                                                                                                                                              |                                                                                                                                  |                                                                                                                                                |                                                                                                                                        |                                                                                                                             |  |  |



| S14                                                                               | S14 Calculation of static and dynamic moduli                                                                                              |             |                   |                   |                                          |                                               |                                 |                                   |  |  |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------|-------------------|------------------------------------------|-----------------------------------------------|---------------------------------|-----------------------------------|--|--|
| Depth<br>(m bgl)                                                                  | Vs<br>m/sec                                                                                                                               | Vp<br>m/sec | density<br>kg/m^3 | Poissons<br>ratio | Shear*<br>Mod.<br>MPa<br>Dynamic<br>Gmax | Youngs<br>*<br>Mod.<br>GPa<br>Dynamic<br>Emax | Bulk*<br>Mod.<br>GPa<br>Dynamic | Youngs**<br>Mod.<br>MPa<br>Static |  |  |
| 1.531                                                                             | 131.159                                                                                                                                   | 576         | 2000              | 0.473             | 34.41                                    | 0.101                                         | 0.618                           | 0.92                              |  |  |
| 2.594                                                                             | 131.159                                                                                                                                   | 576         | 2000              | 0.473             | 34.41                                    | 0.101                                         | 0.618                           | 0.92                              |  |  |
| 2.594                                                                             | 170.163                                                                                                                                   | 576         | 2000              | 0.452             | 57.91                                    | 0.168                                         | 0.586                           | 2.11                              |  |  |
| 3.923                                                                             | 170.163                                                                                                                                   | 576         | 2000              | 0.452             | 57.91                                    | 0.168                                         | 0.586                           | 2.11                              |  |  |
| 3.923                                                                             | 204.75                                                                                                                                    | 1623        | 2000              | 0.492             | 83.85                                    | 0.250                                         | 5.156                           | 4.07                              |  |  |
| 5.584                                                                             | 204.75                                                                                                                                    | 1623        | 2000              | 0.492             | 83.85                                    | 0.250                                         | 5.156                           | 4.07                              |  |  |
| 5.584                                                                             | 230.896                                                                                                                                   | 1623        | 2000              | 0.490             | 106.63                                   | 0.318                                         | 5.126                           | 6.03                              |  |  |
| 7.66                                                                              | 230.896                                                                                                                                   | 1623        | 2000              | 0.490             | 106.63                                   | 0.318                                         | 5.126                           | 6.03                              |  |  |
| 7.66                                                                              | 275.969                                                                                                                                   | 1623        | 2000              | 0.485             | 152.32                                   | 0.452                                         | 5.065                           | 10.81                             |  |  |
| 10.256                                                                            | 275.969                                                                                                                                   | 1623        | 2000              | 0.485             | 152.32                                   | 0.452                                         | 5.065                           | 10.81                             |  |  |
| 10.256                                                                            | 340.062                                                                                                                                   | 3259        | 2500              | 0.494             | 289.11                                   | 0.864                                         | 26.167                          | 31.44                             |  |  |
| 13.5                                                                              | 340.062                                                                                                                                   | 3259        | 2500              | 0.494             | 289.11                                   | 0.864                                         | 26.167                          | 31.44                             |  |  |
| 13.5                                                                              | 431.372                                                                                                                                   | 3259        | 2700              | 0.491             | 502.42                                   | 1.498                                         | 28.007                          | 77.95                             |  |  |
| 17.556                                                                            | 431.372                                                                                                                                   | 3259        | 2700              | 0.491             | 502.42                                   | 1.498                                         | 28.007                          | 77.95                             |  |  |
| 17.556                                                                            | 732.663                                                                                                                                   | 3259        | 2700              | 0.473             | 1449.35                                  | 4.271                                         | 26.744                          | 438.95                            |  |  |
| 21.945                                                                            | 732.663                                                                                                                                   | 3259        | 2700              | 0.473             | 1449.35                                  | 4.271                                         | 26.744                          | 438.95                            |  |  |
|                                                                                   |                                                                                                                                           |             |                   |                   |                                          |                                               |                                 |                                   |  |  |
| ** converted to static equivalent using empirical correlation from Heerden, 1987. |                                                                                                                                           |             |                   |                   |                                          |                                               |                                 |                                   |  |  |
| Soil densi<br>& 2500 kc                                                           | Soil density taken as 2000 kg/m <sup>3</sup><br>& 2500 kg/m <sup>3</sup> for Weathered Bedrock & 2700 kg/m <sup>3</sup> for Fresh Bedrock |             |                   |                   |                                          |                                               |                                 |                                   |  |  |



| S15                     | S15 Calculation of static and dynamic moduli                                                                                                                                                        |                      |                      |                         |                                          |                                               |                                 |                                   |  |  |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|-------------------------|------------------------------------------|-----------------------------------------------|---------------------------------|-----------------------------------|--|--|
| Depth<br>(m bgl)        | Vs<br>m/sec                                                                                                                                                                                         | Vp<br>m/sec          | density<br>kg/m^3    | Poissons<br>ratio       | Shear*<br>Mod.<br>MPa<br>Dynamic<br>Gmax | Youngs<br>*<br>Mod.<br>GPa<br>Dynamic<br>Emax | Bulk*<br>Mod.<br>GPa<br>Dynamic | Youngs**<br>Mod.<br>MPa<br>Static |  |  |
| 1.476                   | 108.621                                                                                                                                                                                             | 193                  | 2000                 | 0.268                   | 23.60                                    | 0.060                                         | 0.043                           | 0.38                              |  |  |
| 2.501<br>2.501<br>3.782 | 195.806<br>195.806                                                                                                                                                                                  | 783<br>783           | 2000<br>2000<br>2000 | 0.200<br>0.467<br>0.467 | 76.68<br>76.68                           | 0.225                                         | 1.124<br>1.124                  | 0.30<br>3.41<br>3.41              |  |  |
| 3.782<br>5.383<br>5.383 | 277.143<br>277.143<br>292.78                                                                                                                                                                        | 1677<br>1677<br>1677 | 2000<br>2000<br>2000 | 0.486<br>0.486<br>0.484 | 153.62<br>153.62<br>171.44               | 0.457<br>0.457<br>0.509                       | 5.420<br>5.420<br>5.396         | 10.97<br>10.97<br>13.12           |  |  |
| 7.384<br>7.384<br>9.885 | 292.78<br>281.693<br>281.693                                                                                                                                                                        | 1677<br>1677<br>1677 | 2000<br>2000<br>2000 | 0.484<br>0.485<br>0.485 | 171.44<br>158.70<br>158.70               | 0.509<br>0.471<br>0.471                       | 5.396<br>5.413<br>5.413         | 13.12<br>11.57<br>11.57           |  |  |
| 9.885<br>13.012         | 348.322<br>348.322                                                                                                                                                                                  | 2555<br>2555<br>2555 | 2500<br>2500<br>2700 | 0.491                   | 303.32<br>303.32                         | 0.904                                         | 15.916<br>15.916<br>16.810      | 33.88<br>33.88                    |  |  |
| 16.92<br>16.92<br>21.15 | 473.487<br>473.487<br>814.065                                                                                                                                                                       | 2555<br>2555<br>2555 | 2700<br>2700<br>2700 | 0.482                   | 605.31<br>605.31<br>1789.29              | 1.794<br>1.794<br>5.166                       | 16.819<br>15.240                | 104.96<br>600.79                  |  |  |
| 21.15<br>** convert     | 21.15       814.065       2555       2700       0.444       1789.29       5.166       15.240       600.79         ** converted to static equivalent using empirical correlation from Heerden, 1987. |                      |                      |                         |                                          |                                               |                                 |                                   |  |  |
| Soil densi              | Soil density taken as 2000 kg/m <sup>3</sup>                                                                                                                                                        |                      |                      |                         |                                          |                                               |                                 |                                   |  |  |



| S16                                                                                                                                                                                         | Calculat                                                                                                                                                                                                  | Calculation of static and dynamic moduli                                                                                                                |                                                                                                                                                                              |                                                                                                                                                                                           |                                                                                                                                                                                             |                                                                                                                                                               |                                                                                                                                                            |                                                                                                                                                                                                     |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Depth<br>(m bgl)                                                                                                                                                                            | Vs<br>m/sec                                                                                                                                                                                               | Vp<br>m/sec                                                                                                                                             | density<br>kg/m^3                                                                                                                                                            | Poissons<br>ratio                                                                                                                                                                         | Shear*<br>Mod.<br>MPa<br>Dynamic<br>Gmax                                                                                                                                                    | Youngs<br>*<br>Mod.<br>GPa<br>Dynamic<br>Emax                                                                                                                 | Bulk*<br>Mod.<br>GPa<br>Dynamic                                                                                                                            | Youngs**<br>Mod.<br>MPa<br>Static                                                                                                                                                                   |  |  |
| 1.007<br>2.265<br>2.265<br>3.838<br>3.838<br>5.804<br>5.804<br>8.262<br>8.262<br>11.334<br>11.334<br>15.175<br>15.175<br>19.976<br>19.976<br>19.976<br>25.977<br>25.977<br>25.977<br>32.471 | 154.844<br>154.844<br>238.282<br>238.282<br>246.593<br>246.593<br>294.98<br>404.368<br>404.368<br>505.267<br>505.267<br>615.646<br>615.646<br>766.94<br>766.94<br>1281.288<br>1281.288<br>ted to static e | 835<br>835<br>1728<br>1728<br>1728<br>1728<br>1728<br>1728<br>1728<br>1677<br>1677<br>1677<br>2555<br>2555<br>2555<br>2555<br>2555<br>2555<br>2555<br>2 | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2700<br>2700<br>2700<br>2700<br>2700<br>2700<br>2700<br>2700<br>2700<br>2700<br>2700<br>2700<br>2700<br>2700<br>2700 | 0.482<br>0.490<br>0.490<br>0.490<br>0.490<br>0.490<br>0.485<br>0.485<br>0.469<br>0.469<br>0.469<br>0.469<br>0.469<br>0.469<br>0.469<br>0.469<br>0.469<br>0.450<br>0.450<br>0.332<br>0.332 | 47.95<br>47.95<br>113.56<br>113.56<br>121.62<br>121.62<br>174.03<br>174.03<br>441.49<br>689.30<br>689.30<br>1023.35<br>1023.35<br>1588.13<br>1588.13<br>4432.59<br>4432.59<br>lation from F | 0.142<br>0.142<br>0.338<br>0.338<br>0.362<br>0.517<br>0.517<br>1.297<br>1.297<br>1.999<br>2.040<br>3.007<br>4.607<br>4.607<br>11.809<br>11.809<br>Heerden, 19 | 1.331<br>1.331<br>5.821<br>5.821<br>5.810<br>5.740<br>5.740<br>7.005<br>7.005<br>6.674<br>16.261<br>16.261<br>15.508<br>15.508<br>11.716<br>11.716<br>287. | $\begin{array}{c} 1.60\\ 1.60\\ 6.70\\ 6.70\\ 7.49\\ 7.49\\ 13.46\\ 13.46\\ 61.45\\ 61.45\\ 125.44\\ 129.69\\ 246.02\\ 246.02\\ 246.02\\ 246.02\\ 2497.42\\ 2350.62\\ 2350.62\\ 2350.62\end{array}$ |  |  |
| Soil densi<br>& 2500 kg                                                                                                                                                                     | Soil density taken as 2000 kg/m <sup>3</sup><br>& 2500 kg/m <sup>3</sup> for Weathered Bedrock & 2700 kg/m <sup>3</sup> for Fresh Bedrock                                                                 |                                                                                                                                                         |                                                                                                                                                                              |                                                                                                                                                                                           |                                                                                                                                                                                             |                                                                                                                                                               |                                                                                                                                                            |                                                                                                                                                                                                     |  |  |



| S17                                                                                                                                                                                                          | Calculat                                                                                                                                                                                                   | Calculation of static and dynamic moduli                                   |                                                                                            |                                                                                                                                                                                                                      |                                                                                                                                                                                      |                                                                                                                                                                                     |                                                                                                                                                                           |                                                                                                                                                                     |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Depth<br>(m bgl)                                                                                                                                                                                             | Vs<br>m/sec                                                                                                                                                                                                | Vp<br>m/sec                                                                | density<br>kg/m^3                                                                          | Poissons<br>ratio                                                                                                                                                                                                    | Shear*<br>Mod.<br>MPa<br>Dynamic<br>Gmax                                                                                                                                             | Youngs<br>*<br>Mod.<br>GPa<br>Dynamic<br>Emax                                                                                                                                       | Bulk*<br>Mod.<br>GPa<br>Dynamic                                                                                                                                           | Youngs**<br>Mod.<br>MPa<br>Static                                                                                                                                   |  |  |
| 0.634<br>1.427<br>1.427<br>2.418<br>2.418<br>3.657<br>3.657<br>5.206<br>5.206<br>7.142<br>7.142<br>9.562<br>9.562<br>9.562<br>12.587<br>12.587<br>16.368<br>16.368<br>16.368<br>20.46<br>** convert<br>1987. | 123.989<br>123.989<br>265.184<br>265.184<br>291.16<br>291.16<br>247.891<br>393.815<br>393.815<br>591.079<br>591.079<br>703.395<br>703.395<br>833.177<br>833.177<br>1366.382<br>1366.382<br>ed to static ed | 358<br>358<br>1379<br>1379<br>1379<br>1379<br>1379<br>3773<br>3773<br>3773 | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2500<br>2500<br>2500<br>2700<br>27 | 0.432<br>0.432<br>0.481<br>0.481<br>0.477<br>0.477<br>0.483<br>0.483<br>0.483<br>0.494<br>0.494<br>0.494<br>0.487<br>0.487<br>0.487<br>0.482<br>0.482<br>0.482<br>0.474<br>0.474<br>0.475<br>0.425<br>0.425<br>0.425 | 30.75<br>30.75<br>140.65<br>140.65<br>169.55<br>169.55<br>122.90<br>122.90<br>387.73<br>387.73<br>943.31<br>943.31<br>1335.86<br>1335.86<br>1874.30<br>1874.30<br>5040.90<br>5040.90 | 0.088<br>0.088<br>0.417<br>0.417<br>0.501<br>0.501<br>0.365<br>0.365<br>1.159<br>1.159<br>2.806<br>2.806<br>3.959<br>3.959<br>3.959<br>5.527<br>5.527<br>14.362<br>14.362<br>arden, | 0.215<br>0.215<br>3.616<br>3.616<br>3.577<br>3.577<br>3.639<br>35.072<br>35.072<br>35.072<br>37.178<br>36.655<br>36.655<br>36.655<br>35.937<br>35.937<br>31.715<br>31.715 | 0.73<br>0.73<br>9.43<br>9.43<br>12.78<br>12.78<br>12.78<br>7.57<br>51.02<br>51.02<br>219.51<br>219.51<br>387.40<br>387.40<br>671.65<br>671.65<br>3246.79<br>3246.79 |  |  |
| Soil densi                                                                                                                                                                                                   | Soil density taken as 2000 kg/m <sup>3</sup><br>& 2500 kg/m <sup>3</sup> for Weathered Bedrock & 2700 kg/m <sup>3</sup> for Eresh Bedrock                                                                  |                                                                            |                                                                                            |                                                                                                                                                                                                                      |                                                                                                                                                                                      |                                                                                                                                                                                     |                                                                                                                                                                           |                                                                                                                                                                     |  |  |



| S18                                                                                                                                                                                      | Calcula                                                                                                                                                                                                               | Calculation of static and dynamic moduli                                                                                         |                                                             |                                                                                                                                                                                                                  |                                                                                                                                                                                                           |                                                                                                                                                                                   |                                                                                                                                                              |                                                                                                                                                                     |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Depth<br>(m bgl)                                                                                                                                                                         | Vs<br>m/sec                                                                                                                                                                                                           | Vp<br>m/sec                                                                                                                      | density<br>kg/m^3                                           | Poissons<br>ratio                                                                                                                                                                                                | Shear*<br>Mod.<br>MPa<br>Dynamic<br>Gmax                                                                                                                                                                  | Youngs<br>*<br>Mod.<br>GPa<br>Dynamic<br>Emax                                                                                                                                     | Bulk*<br>Mod.<br>GPa<br>Dynamic                                                                                                                              | Youngs**<br>Mod.<br>MPa<br>Static                                                                                                                                   |  |  |  |
| 0.651<br>1.464<br>1.464<br>2.481<br>2.481<br>3.752<br>3.752<br>3.752<br>5.34<br>7.326<br>7.326<br>9.808<br>9.808<br>12.91<br>12.91<br>12.91<br>16.788<br>16.788<br>20.985<br>** converte | 218.709<br>218.709<br>244.091<br>224.091<br>228.664<br>228.664<br>213.023<br>213.023<br>289.886<br>289.886<br>393.084<br>393.084<br>461.412<br>461.412<br>552.795<br>552.795<br>552.795<br>936.89<br>936.89<br>936.89 | 775<br>775<br>775<br>1891<br>1891<br>1891<br>1891<br>1891<br>1891<br>4016<br>4016<br>4016<br>4016<br>4016<br>4016<br>4016<br>401 | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200 | 0.457<br>0.457<br>0.445<br>0.493<br>0.493<br>0.493<br>0.494<br>0.494<br>0.494<br>0.494<br>0.495<br>0.495<br>0.495<br>0.495<br>0.493<br>0.493<br>0.490<br>0.490<br>0.490<br>0.471<br>0.471<br>pirical correlation | 95.67<br>95.67<br>119.16<br>119.16<br>104.57<br>104.57<br>90.76<br>90.76<br>168.07<br>168.07<br>386.29<br>386.29<br>386.29<br>574.83<br>574.83<br>574.83<br>825.07<br>2369.96<br>2369.96<br>tion from Hee | 0.279<br>0.279<br>0.344<br>0.344<br>0.312<br>0.271<br>0.271<br>0.271<br>0.500<br>0.500<br>1.155<br>1.155<br>1.717<br>1.717<br>2.459<br>2.459<br>6.973<br>6.973<br>6.973<br>erden, | 1.074<br>1.074<br>1.042<br>1.042<br>7.012<br>7.012<br>7.031<br>7.031<br>6.928<br>6.928<br>39.806<br>39.806<br>42.780<br>42.780<br>42.446<br>40.386<br>40.386 | 4.86<br>4.86<br>6.89<br>6.89<br>5.86<br>5.86<br>4.64<br>4.64<br>12.75<br>12.75<br>50.75<br>50.75<br>97.58<br>97.58<br>97.58<br>176.56<br>176.56<br>985.71<br>985.71 |  |  |  |
| Soil densit<br>& 2500 kg                                                                                                                                                                 | Soil density taken as 2000 kg/m <sup>3</sup><br>& 2500 kg/m <sup>3</sup> for Weathered Bedrock & 2700 kg/m <sup>3</sup> for Fresh Bedrock                                                                             |                                                                                                                                  |                                                             |                                                                                                                                                                                                                  |                                                                                                                                                                                                           |                                                                                                                                                                                   |                                                                                                                                                              |                                                                                                                                                                     |  |  |  |



| S19                                                                                                                                                                      | Calcula                                                                                                                                                                     | Calculation of static and dynamic moduli                                                |                                                             |                                                                                                                                                                         |                                                                                                                                                           |                                                                                                                                                                |                                                                                                                                                    |                                                                                                                                                                              |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Depth                                                                                                                                                                    | Vs                                                                                                                                                                          | Vp                                                                                      | density                                                     | Poissons<br>ratio                                                                                                                                                       | Shear*<br>Mod.                                                                                                                                            | Youngs<br>*<br>Mod.                                                                                                                                            | Bulk*<br>Mod.                                                                                                                                      | Youngs**<br>Mod.                                                                                                                                                             |  |  |
| (m bgl)                                                                                                                                                                  | m/sec                                                                                                                                                                       | m/sec                                                                                   | kg/m^3                                                      |                                                                                                                                                                         | MPa<br>Dynamic<br>Gmax                                                                                                                                    | GPa<br>Dynamic<br>Emax                                                                                                                                         | GPa<br>Dynamic                                                                                                                                     | MPa<br>Static                                                                                                                                                                |  |  |
| 0.895<br>2.013<br>2.013<br>3.411<br>5.158<br>5.158<br>7.342<br>7.342<br>10.072<br>10.072<br>13.485<br>13.485<br>13.485<br>17.751<br>17.751<br>23.084<br>23.084<br>28.855 | 151.213<br>151.213<br>198.917<br>198.917<br>214.04<br>247.552<br>247.552<br>328.622<br>328.622<br>322.379<br>322.379<br>407.411<br>407.411<br>583.615<br>583.615<br>990.305 | 293<br>293<br>851<br>851<br>1862<br>1862<br>1862<br>1862<br>1862<br>1862<br>1862<br>186 | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200 | 0.318<br>0.318<br>0.471<br>0.471<br>0.493<br>0.493<br>0.493<br>0.491<br>0.484<br>0.484<br>0.485<br>0.485<br>0.485<br>0.492<br>0.492<br>0.492<br>0.493<br>0.493<br>0.493 | 45.73<br>45.73<br>79.14<br>91.63<br>91.63<br>122.56<br>122.56<br>215.98<br>207.86<br>207.86<br>448.16<br>919.64<br>919.64<br>919.64<br>2647.90<br>2647.90 | 0.121<br>0.121<br>0.233<br>0.233<br>0.274<br>0.274<br>0.365<br>0.365<br>0.641<br>0.641<br>0.617<br>1.337<br>1.337<br>1.337<br>2.728<br>2.728<br>2.728<br>7.667 | 0.111<br>0.111<br>1.343<br>1.343<br>6.812<br>6.771<br>6.771<br>6.646<br>6.646<br>6.657<br>27.397<br>27.397<br>26.768<br>26.768<br>24.464<br>24.464 | $\begin{array}{c} 1.22\\ 1.22\\ 3.61\\ 3.61\\ 4.71\\ 4.71\\ 7.60\\ 7.60\\ 19.20\\ 19.20\\ 18.04\\ 18.04\\ 64.61\\ 64.61\\ 209.47\\ 209.47\\ 1152.66\\ 1152.66\\ \end{array}$ |  |  |
| ** converte<br>1987.                                                                                                                                                     | <ul><li>** converted to static equivalent using empirical correlation from Heerden,<br/>1987.</li></ul>                                                                     |                                                                                         |                                                             |                                                                                                                                                                         |                                                                                                                                                           |                                                                                                                                                                |                                                                                                                                                    |                                                                                                                                                                              |  |  |
| Soil densi <sup>:</sup><br>& 2500 kc                                                                                                                                     | Soil density taken as 2000 kg/m <sup>3</sup><br>& 2500 kg/m <sup>3</sup> for Weathered Bedrock & 2700 kg/m <sup>3</sup> for Eresh Bedrock                                   |                                                                                         |                                                             |                                                                                                                                                                         |                                                                                                                                                           |                                                                                                                                                                |                                                                                                                                                    |                                                                                                                                                                              |  |  |



| S20              | Calculat                                                                                                      | Calculation of static and dynamic moduli |                   |                   |                                          |                                               |                                 |                                   |  |  |  |
|------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------|-------------------|------------------------------------------|-----------------------------------------------|---------------------------------|-----------------------------------|--|--|--|
| Depth<br>(m bgl) | Vs<br>m/sec                                                                                                   | Vp<br>m/sec                              | density<br>kg/m^3 | Poissons<br>ratio | Shear*<br>Mod.<br>MPa<br>Dynamic<br>Gmax | Youngs<br>*<br>Mod.<br>GPa<br>Dynamic<br>Emax | Bulk*<br>Mod.<br>GPa<br>Dynamic | Youngs**<br>Mod.<br>MPa<br>Static |  |  |  |
| 1.998            | 205.708                                                                                                       | 785                                      | 2000              | 0.463             | 84.63                                    | 0.248                                         | 1.120                           | 4.00                              |  |  |  |
| 3.385            | 205.708                                                                                                       | 785                                      | 2000              | 0.463             | 84.63                                    | 0.248                                         | 1.120                           | 4.00                              |  |  |  |
| 3.385            | 290.672                                                                                                       | 1501                                     | 2000              | 0.481             | 168.98                                   | 0.500                                         | 4.281                           | 12.76                             |  |  |  |
| 5.119            | 290.672                                                                                                       | 1501                                     | 2000              | 0.481             | 168.98                                   | 0.500                                         | 4.281                           | 12.76                             |  |  |  |
| 5.119            | 305.648                                                                                                       | 1501                                     | 2000              | 0.478             | 186.84                                   | 0.552                                         | 4.257                           | 15.03                             |  |  |  |
| 7.286            | 305.648                                                                                                       | 1501                                     | 2000              | 0.478             | 186.84                                   | 0.552                                         | 4.257                           | 15.03                             |  |  |  |
| 7.286            | 369.023                                                                                                       | 1501                                     | 2000              | 0.468             | 272.36                                   | 0.800                                         | 4.143                           | 27.65                             |  |  |  |
| 9.995            | 369.023                                                                                                       | 1501                                     | 2000              | 0.468             | 272.36                                   | 0.800                                         | 4.143                           | 27.65                             |  |  |  |
| 9.995            | 447.248                                                                                                       | 1501                                     | 2000              | 0.451             | 400.06                                   | 1.161                                         | 3.973                           | 51.19                             |  |  |  |
| 13.381           | 447.248                                                                                                       | 1501                                     | 2000              | 0.451             | 400.06                                   | 1.161                                         | 3.973                           | 51.19                             |  |  |  |
| 13.381           | 549.951                                                                                                       | 4268                                     | 2700              | 0.492             | 816.60                                   | 2.436                                         | 48.094                          | 173.81                            |  |  |  |
| 17.614           | 549.951                                                                                                       | 4268                                     | 2700              | 0.492             | 816.60                                   | 2.436                                         | 48.094                          | 173.81                            |  |  |  |
| 17.614           | 690.48                                                                                                        | 4268                                     | 2700              | 0.487             | 1287.26                                  | 3.827                                         | 47.466                          | 366.28                            |  |  |  |
| 22.905           | 690.48                                                                                                        | 4268                                     | 2700              | 0.487             | 1287.26                                  | 3.827                                         | 47.466                          | 366.28                            |  |  |  |
| 22.905           | 1163.372                                                                                                      | 4268                                     | 2700              | 0.460             | 3654.27                                  | 10.670                                        | 44.310                          | 1988.38                           |  |  |  |
| 28.631           | 28.631       1163.372       4268       2700       0.460       3654.27       10.670       44.310       1988.38 |                                          |                   |                   |                                          |                                               |                                 |                                   |  |  |  |
| Soil densi       | Soil density taken as 2000 kg/m <sup>3</sup>                                                                  |                                          |                   |                   |                                          |                                               |                                 |                                   |  |  |  |



# 9. APPENDIX D: SEISMIC REFRACTION PLATES



















![](_page_70_Figure_0.jpeg)

![](_page_71_Figure_0.jpeg)




















## **10. APPENDIX E: DRAWINGS**

The information derived from the geophysical investigation is presented in the following drawings:

| 13170_01 | Geophysical Survey Location                                            | 1:2000 | @ A3 |
|----------|------------------------------------------------------------------------|--------|------|
| 13170_02 | ERT Profiles R18, R16 & R2                                             | 1:1250 | @A3  |
| 13170_03 | ERT Profiles R1 & R6-R8                                                | 1:1250 | @A3  |
| 13170_04 | ERT Profiles R3 & R5                                                   | 1:1250 | @A3  |
| 13170_05 | ERT Profiles R11 & R10                                                 | 1:1250 | @A3  |
| 13170_06 | ERT Profiles R14, R21 & R9                                             | 1:1250 | @A3  |
| 13170_07 | ERT Profiles R20, R15, R13 & R12                                       | 1:1250 | @A3  |
| 13170_08 | ERT Profiles R19, R4 & R17<br>& Seismic Refraction Profiles S4 and S19 | 1:1250 | @A3  |
| 13170_09 | Interpreted Bedrock Elevation                                          | 1:2000 | @A3  |
| 13170_10 | Interpreted Overburden Thickness                                       | 1:2000 | @A3  |
| 13170_11 | Summary Map                                                            | 1:2000 | @A3  |





Distance (m)











MCI-B9

40.0 35.0



30.0





































| apex 1 Interpreted Bedrock Elevation (mOD)                                                                                                                                                                                                      | PROJECT:<br>RANHEIM VESTRE<br>DRAWING NO:<br>13170_09 INTERPRE<br>DATE:<br>25-02-14<br>CLIENT:<br>MULTICONSULT | ETED BEDROC | < ELEVATION     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------|-----------------|
| No.6 Knockmullen Regus House, Herald Way   Business Pk, Gorey Pegasus Business Park   Co. Wexford Castle DonIngton   Data Point                                                                                                                 | SCALE:<br>1:2000 @A3<br>Version: Date:<br>1 25-02-14                                                           | Drawn By:   | Checked:<br>POC |
| Intellinit.     Derby UE/4 212       T +353 (0)402-21842     UK       F +353 (0)402-21843     T +44 (0)844 8700 692       E Info@apexgeoservices.le     E Info@apexgeoservices.co.uk       www.apexgeoservices.le     www.apexgeoservices.co.uk |                                                                                                                |             |                 |



|                                                        | PROJECT: RANHEIM | VESTRE                                                  |          |  |
|--------------------------------------------------------|------------------|---------------------------------------------------------|----------|--|
|                                                        |                  | DRAWING No:13170 10 INTERPRETED<br>OVERBURDEN THICKNESS |          |  |
| 3.5 Interpreted Overburden Thickness (m)               | 25-02-14         |                                                         |          |  |
| Reoservices                                            | MULTICON         | ISULT                                                   |          |  |
| Business Pk, Gorey Pegasus Business Park               | SCALE: 1:2000 @A | 3                                                       | Observed |  |
| Co. Wexford Castle DonIngton   Ireland. Derby DE74 2TZ | 1 25-02-14       | SOR                                                     | POC      |  |
| T +353 (0)402-21842 UK                                 |                  |                                                         |          |  |
| E Info@apexgeoservIces.le E Info@apexgeoservIces.co.uk |                  |                                                         |          |  |
| www.apexgeoservlces.le www.apexgeoservlces.co.uk       |                  |                                                         |          |  |

